Basics of Wastewater and Sewage Treatment –

Posted by 10 Jun, 2013

Wastewater is treated in 3 phases: primary (solid removal), secondary (bacterial decomposition), and tertiary (extra filtration).

fig. 1

Origins of Sewage

Sewage is generated by residential and industrial establishments. It includes household waste liquid from toilets, baths, showers, kitchens, sinks, and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce. The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world. Greywater is water generated from domestic activities such as laundry, dishwashing, and bathing, and can be reused more readily. Blackwater comes from toilets and contains human waste.

Sewage may include stormwater runoff. Sewerage systems capable of handling storm water are known as combined sewer systems. This design was common when urban sewerage systems were first developed, in the late 19th and early 20th centuries.  Combined sewers require much larger and more expensive treatment facilities than sanitary sewers. Heavy volumes of storm runoff may overwhelm the sewage treatment system, causing a spill or overflow. Sanitary sewers are typically much smaller than combined sewers, and they are not designed to transport stormwater. Backups of raw sewage can occur if excessive infiltration/inflow (dilution by stormwater and/or groundwater) is allowed into a sanitary sewer system. Communities that have urbanized in the mid-20th century or later generally have built separate systems for sewage (sanitary sewers) and stormwater, because precipitation causes widely varying flows, reducing sewage treatment plant efficiency.

As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. (See urban runoff.)[5] Some jurisdictions require stormwater to receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for stormwater include retention basins, wetlands, buried vaults with various kinds of media filters, and vortex separators (to remove coarse solids).

Sewage treatment is done in three stages: primary, secondary and tertiary treatment (Figure 1).

Primary Treatment
In primary treatment, sewage is stored in a basin where solids (sludge) can settle to the bottom and oil and lighter substances can rise to the top. These layers are then removed and then the remaining liquid can be sent to secondary treatment. Sewage sludge is treated in a separate process called sludge digestion.

Secondary Treatment
Secondary treatment removes dissolved and suspended biological matter, often using microorganisms in a controlled environment. Most secondary treatment systems use aerobic bacteria, which consume the organic components of the sewage (sugar, fat, and so on). Some systems use fixed film systems, where the bacteria grow on filters, and the water passes through them. Suspended growth systems use “activated” sludge, where decomposing bacteria are mixed directly into the sewage. Because oxygen is critical to bacterial growth, the sewage is often mixed with air to facilitate decomposition.

Tertiary Treatment
Tertiary treatment (sometimes called “effluent polishing”) is used to further clean water when it is being discharged into a sensitive ecosystem. Several methods can be used to further disinfect sewage beyond primary and secondary treatment. Sand filtration, where water is passed through a sand filter, can be used to remove particulate matter. Wastewater may still have high levels of nutrients such as nitrogen and phosphorus. These can disrupt the nutrient balance of aquatic ecosystems and cause algae blooms and excessive weed growth. Phosphorus can be removed biologically in a process called enhanced biological phosphorus removal. In this process, specific bacteria, called polyphosphate accumulate organisms that store phosphate in their tissue. When the biomass accumulated in these bacteria is separated from the treated water, these biosolids have a high fertilizer value. Nitrogen can also be removed using nitrifying bacteria. Lagooning is another method for removing nutrients and waste from sewage. Water is stored in a lagoon and native plants, bacteria, algae, and small zooplankton filter nutrients and small particles from the water.

Sludge Digestion & Disposal
Sewage sludge scraped off the bottom of the settling tank during primary treatment is treated separately from wastewater. Sludge can be disposed of in several ways. First, it can be digested using bacteria; bacterial digestion can sometimes produce methane biogas, which can be used to generate electricity. Sludge can also be incinerated, or condensed, heated to disinfect it, and reused as fertilizer.

When a liquid sludge is produced, further treatment may be required to make it suitable for final disposal. Sewage sludge scraped off the bottom of the settling tank during primary treatment is treated separately from wastewater. Sludge can be disposed of in several ways. First, it can be digested using bacteria; bacterial digestion can sometimes produce methane biogas, which can be used to generate electricity. Sludge can also be incinerated, or condensed, heated to disinfect it, and reused as fertilizer.

Typically, sludges are thickened (dewatered) to reduce the volumes transported off-site for disposal. There is no process which completely eliminates the need to dispose of biosolids. There is, however, an additional step some cities are taking to superheat sludge and convert it into small pelletized granules that are high in nitrogen and other organic materials. In New York City, for example, several sewage treatment plants have dewatering facilities that use large centrifuges along with the addition of chemicals such as polymer to further remove liquid from the sludge. The removed fluid, called “centrate,” is typically reintroduced into the wastewater process. The product which is left is called “cake,” and that is picked up by companies which turn it into fertilizer pellets. This product is then sold to local farmers and turf farms as a soil amendment or fertilizer, reducing the amount of space required to dispose of sludge in landfills. Much sludge originating from commercial or industrial areas is contaminated with toxic materials that are released into the sewers from the industrial processes. Elevated concentrations of such materials may make the sludge unsuitable for agricultural use and it may then have to be incinerated or disposed of to landfill.

Notably, throughout the development of excreta, wastewater, wastewater sludge and biosolids management – from the least developed to the most developed countries – there are in­evitable public concerns about how best to manage this “waste” that is also a resource. Putting biosolids to their best uses in each local situation is the goal of most of the programs discussed in the following reports. That is the goal of many sanitation and water quality experts. But the general public has other goals: avoiding the waste and the odors it can produce.There is a natural aversion to fecal matter and anything associated with it. Conflicts arise when experts propose recycling this “waste,” usually in a treated and tested form commonly called “biosolids,” back to soils in communities.

Managing excreta and wastewater sludge to produce recyclable biosolids involves many technical challenges. But equally significant are these social, cultural, and political challenges. Funding is required to build infrastructure – and, around the world, the public is the source of funding, either through taxes or sewer usage fees. In order for proper sanitation to be built and operated, complex community sanitation agencies with support from state, provincial, and national governments are needed.

Wastewater quality indicators are laboratory tests to assess suitability of wastewater for disposal or re-use. Tests selected and desired test results vary with the intended use or discharge location. Tests measure physical, chemical, and biological characteristics of the wastewater.

Physical characteristics

Aquatic organisms cannot survive outside of specific temperature ranges. Irrigation runoff and water cooling of power stations may elevate temperatures above the acceptable range for some species. Temperature may be measured with a calibrated thermometer.

Solid material in wastewater may be dissolved, suspended, or settleable. Total dissolved solids or TDS (sometimes called filtrable residue) is measured as the mass of residue remaining when a measured volume of filtered water is evaporated. The mass of dried solids remaining on the filter is called total suspended solids (TSS) or nonfiltrable residue. Settleable solids are measured as the visible volume accumulated at the bottom of an Imhoff cone after water has settled for one hour. Turbidity is a measure of the light scattering ability of suspended matter in the water. Salinity measures water density or conductivity changes caused by dissolved materials.

Chemical characteristics
Virtually any chemical may be found in water, but routine testing is commonly limited to a few chemical elements of unique significance.

Water ionizes into hydronium (H3O) cations and hydroxyl (OH) anions. The concentration of ionized hydrogen (as protonated water) is expressed as pH.

Most aquatic habitats are occupied by fish or other animals requiring certain minimum dissolved oxygen concentrations to survive. Dissolved oxygen concentrations may be measured directly in wastewater, but the amount of oxygen potentially required by other chemicals in the wastewater is termed an oxygen demand. Dissolved or suspended oxidizable organic material in wastewater will be used as a food source. Finely divided material is readily available to microorganisms whose populations will increase to digest the amount of food available. Digestion of this food requires oxygen, so the oxygen content of the water will ultimately be decreased by the amount required to digest the dissolved or suspended food. Oxygen concentrations may fall below the minimum required by aquatic animals if the rate of oxygen utilization exceeds replacement by atmospheric oxygen.

The reaction for biochemical oxidation may be written as:
Oxidizable material + bacteria + nutrient + O2 → CO2 + H2O + oxidized inorganics such as NO3 or SO4
Oxygen consumption by reducing chemicals such as sulfides and nitrites is typified as follows:

S– + 2 O2 → SO4–
NO2- + ½ O2 → NO3-

Since all natural waterways contain bacteria and nutrient, almost any waste compounds introduced into such waterways will initiate biochemical reactions (such as shown above). Those biochemical reactions create what is measured in the laboratory as the biochemical oxygen demand (BOD).

Oxidizable chemicals (such as reducing chemicals) introduced into a natural water will similarly initiate chemical reactions (such as shown above). Those chemical reactions create what is measured in the laboratory as the chemical oxygen demand (COD).

Both the BOD and COD tests are a measure of the relative oxygen-depletion effect of a waste contaminant. Both have been widely adopted as a measure of pollution effect. The BOD test measures the oxygen demand of biodegradable pollutants whereas the COD test measures the oxygen demand of biogradable pollutants plus the oxygen demand of non-biodegradable oxidizable pollutants.

The so-called 5-day BOD measures the amount of oxygen consumed by biochemical oxidation of waste contaminants in a 5-day period. The total amount of oxygen consumed when the biochemical reaction is allowed to proceed to completion is called the Ultimate BOD. The Ultimate BOD is too time consuming, so the 5-day BOD has almost universally been adopted as a measure of relative pollution effect.
There are also many different COD tests. Perhaps, the most common is the 4-hour COD.

There is no generalized correlation between the 5-day BOD and the Ultimate BOD. Likewise, there is no generalized correlation between BOD and COD. It is possible to develop such correlations for a specific waste contaminant in a specific wastewater stream, but such correlations cannot be generalized for use with any other waste contaminants or wastewater streams.

The laboratory test procedures for the determining the above oxygen demands are detailed in the following sections of the “Standard Methods For the Examination Of Water and Wastewater” available at

5-day BOD and Ultimate BOD: Sections 5210B and 5210C
COD: Section 5220

Nitrogen is an important nutrient for plant and animal growth. Atmospheric nitrogen is less biologically available than dissolved nitrogen in the form of ammonia and nitrates. Availability of dissolved nitrogen may contribute to algal blooms. Ammonia and organic forms of nitrogen are often measured as Total Kjeldahl Nitrogen, and analysis for inorganic forms of nitrogen may be performed for more accurate estimates of total nitrogen content.

Chlorine has been widely used for bleaching, as a disinfectant, and for biofouling prevention in water cooling systems. Remaining concentrations of oxidizing hypochlorous acid and hypochlorite ions may be measured as chlorine residual to estimate effectiveness of disinfection or to demonstrate safety for discharge to aquatic ecosystems.

Biological characteristics
Water may be tested by a bioassay comparing survival of an aquatic test species in the wastewater in comparison to water from some other source. Water may also be evaluated to determine the approximate biological population of the wastewater. Pathogenic micro-organisms using water as a means of moving from one host to another may be present in sewage. Coliform index measures the population of an organism commonly found in the intestines of warm-blooded animals as an indicator of the possible presence of other intestinal pathogens.

Myron L Meters is the premier online retailer of the Myron L meters preferred by water professionals, like the Ultrameter III 9PTKA.

Information shared via Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0), original material found here:


Categories : Case Studies & Application Stories, Science and Industry Updates
loading comments...