Ultrapen PT2 Calibration – MyronLMeters.com

Posted by 28 Oct, 2012

Tweet Ultrapen PT2 Calibration We recommend calibrating twice a month, depending on usage. However, you should check the calibration whenever measurements are not as expected. 3-point Wet Calibration is most accurate and is recommended. NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are […]


Ultrapen PT2 Calibration
We recommend calibrating twice a month, depending on usage. However, you should check the calibration whenever measurements are not as expected. 3-point Wet Calibration is most accurate and is recommended.

NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are using a proper pH buffer solution. If the solution is correct, clean the glass bulb of the sensor with a cotton swab soaked in isopropyl alcohol. Restart calibration.

NOTE: Small bubbles trapped in the sensor may give a false calibration. After calibration is completed, measure the pH buffer solutions again to verify correct calibration.

NOTE: If at any point during calibration, you do not submerge the sensor in solution
before the flashing slows, allow the pen to power off and start over.

A. Calibration Preparation
1. For maximum accuracy, fill 2 clean containers with each pH buffer. Arrange them in such a way that you can clearly remember which is the rinse solution and which is the calibration buffer. If you don’t have enough buffer, you can use
1 container of each buffer for calibration and 1 container of clean water for all rinsing. Always rinse the pH sensor between buffer solutions.
2. Ensure the pH sensor is clean and free of debris.

B. 3-Point Calibration
Use pH 7, 4 and 10 buffers for 3-point calibration. You can find the buffer solutions here: http://www.myronlmeters.com/pH-Buffer-Calibration-Solutions-s/82.htm
1. Thoroughly rinse the pen by submerging the sensor in pH 7 buffer rinse solution and swirling it around.
2. Push and release the push button to turn the unit on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
4. Release the button when “CAL” displays. The display will indicate “CAL” and
the LED will flash rapidly.
5. While the LED flashes rapidly, dip the pen in pH 7 buffer calibration solution
so that the sensor is completely submerged.
6. While the LED flashes slowly, the pH calibration point will display along with
“CAL”. Swirl the pen around to remove bubbles, keeping the sensor submerged.
7. If the pH 7 calibration is successful, the display will indicate “SAVEd”, then
“PUSHCONT” will be displayed.
8. Push and release the push button to continue. The LED will begin flashing rapidly.
9. Repeat steps 5 through 8 with pH 4 and 10 buffer calibration solutions.
10. After the 3rd calibration point is successfully saved, the display will indicate
“SAVEd” and power off.
11. Verify calibration by retesting the calibration solution.

C. 2-Point Calibration
Use pH 7 and 4 or 10 buffers for 2-point calibration.
1. Thoroughly rinse the pen by submerging the sensor in pH 7 buffer rinse solution and swirling it around.
2. Push and release the push button to turn the unit on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
4. Release the button when “CAL” displays. The display will indicate “CAL” and
the LED will flash rapidly.
5. While the LED flashes rapidly, dip the pen in pH 7 buffer calibration solution
so that the sensor is completely submerged.
6. While the LED flashes slowly, the pH calibration point will display along with
“CAL”. Swirl the pen around to remove bubbles, keeping the sensor submerged.
7. If the pH 7 calibration is successful, the display will indicate “SAVEd”, then
“PUSHCONT” will be displayed.
8. Push and release the push button to continue. The LED will begin flashing rapidly.
9. Repeat steps 5 through 7 with pH 4 or 10 buffer calibration solution.
10. Leave the pen in the same buffer solution until the unit powers off. The offset will be applied to the remaining calibration point.
11. Verify calibration by retesting the calibration solution.

D. 1-Point Calibration
Use pH 7, 4 or 10 buffer for 1-point calibration.
1. Thoroughly rinse the pen by submerging the sensor in pH buffer rinse solution and swirling it around.
2. Push and release the push button to turn the unit on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
4. Release the button when “CAL” displays. The display will indicate “CAL”
and the LED will flash rapidly.
5. While the LED flashes rapidly, dip the pen in pH buffer calibration solution
so that the sensor is completely submerged.
6. While the LED flashes slowly, the pH calibration point will display along with “CAL”;
swirl the pen around to remove bubbles, keeping the sensor submerged.
7. If the pH calibration is successful, the display will indicate “SAVEd”, then “PUSHCONT” will be displayed. “PUSHCONT” will not display if you calibrated 4 or 10.
8. Leave the pen in the same buffer solution until the unit powers off. The offset will be applied to the remaining calibration points.
9. Verify calibration by retesting the calibration solution.

E. Factory Calibration
When pH buffers are not available, the PT2 can be returned to factory default calibration using the FAC CAL function. This will erase any stored wet calibration. NOTE: default factory calibration resets the electronics only and does NOT take the condition of the sensor into consideration.
To return your unit to factory calibration:
1. Push and release the push button.
2. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
3. Release the button when “FAC CAL” displays. The display will alternate between “PUSHnHLD” and “FAC CAL”.
4. Push and hold the push button. “SAVEd FAC” displays indicating the pen has been reset to its factory calibration.

Myron L Meters is the premier online retailer of accurate, reliable, easy-to-use Myron L meters.

Please visit us on the web at:

http://www.myronlmeters.com

Facebook:

http://www.facebook.com/pages/Myron-L-Meters/147455608645777

Twitter:

http://twitter.com/MyronLMeters

Google +:

https://plus.google.com/i/0gw_uw5P328:dbK-UM_4xek

Linkedin:

http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro

YouTube:

http://www.youtube.com/myronlmeters

News:

http://waterindustrynews.com

Categories : Product Updates, Technical Tips

pH and pH Meters – MyronLMeters.com

Posted by 24 Sep, 2012

TweetWhat is pH? pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions […]

What is pH?

pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Measuring pH for aqueous solutions can be done with a glass electrode and a pH meter, or using indicators.

Measuring pH is important in water treatment, medicine, biology, chemistry, agriculture, forestry, food science, environmental science, oceanography, civil engineering, chemical engineering, and many other applications.

p[H] was first introduced by Danish chemist Søren Peder Lauritz Sørensen at the Carlsberg Laboratory in 1909 and revised to the modern pH in 1924 to accommodate definitions and measurements in terms of electrochemical cells.  According to the Carlsberg Foundation pH stands for “power of hydrogen”.

pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion activity, aH+, in a solution.

pH Meters

A pH meter is an electronic device used for measuring the pH (acidity or alkalinity) of a liquid (though special probes are sometimes used to measure the pH of semi-solid substances). A typical pH meter consists of a special measuring probe (a glass electrode) connected to an electronic meter that measures and displays the pH reading.

The probe

The pH probe measures pH as the activity of the hydrogen cations surrounding a thin-walled glass bulb at its tip. The probe produces a small voltage (about 0.06 volt per pH unit) that is measured and displayed as pH units by the meter. For more information about pH probe care or replacement, please consult your Myron L meter operations manual.

Calibration and use

*Please consult your Myron L meter operations manual before calibrating.

For very precise work the pH meter should be calibrated before each measurement. For normal use calibration should be performed at the beginning of each day. The reason for this is that the glass electrode does not give a reproducible e.m.f. over longer periods of time. Calibration should be performed with at least two standard buffer solutions that span the range of pH values to be measured. For general purposes buffers at pH 4 and pH 10 are acceptable. The pH meter has one control (calibrate) to set the meter reading equal to the value of the first standard buffer and a second control (slope) which is used to adjust the meter reading to the value of the second buffer. A third control allows the temperature to be set. Standard buffer solutions, which can be obtained from MyronLMeters.com here:

http://www.myronlmeters.com/pH-Buffer-Calibration-Solutions-s/82.htm

usually state how the buffer value changes with temperature. For more precise measurements, a three buffer solution calibration is preferred. As pH 7 is essentially, a “zero point” calibration (akin to zeroing a scale), calibrating at pH 7 first, calibrating at the pH closest to the point of interest ( e.g. either 4 or 10) second and checking the third point will provide a more linear accuracy to what is essentially a non-linear problem. Some meters will allow a three point calibration and that is the preferred scheme for the most accurate work, and is recommended by Myron L Meters. Higher quality meters will have a provision to account for temperature coefficient correction, and high-end pH probes have temperature probes built in. The calibration process correlates the voltage produced by the probe (approximately 0.06 volts per pH unit) with the pH scale. After each single measurement, the probe is rinsed with distilled water or deionized water to remove any traces of the solution being measured, blotted with a scientific wipe to absorb any remaining water which could dilute the sample and thus alter the reading, and then quickly immersed in another solution.

Storage conditions of the glass probes

When not in use, the glass probe tip must be kept wet at all times to avoid the pH sensing membrane dehydration and the subsequent dysfunction of the electrode. You can get your sensor storage solution here:

http://www.myronlmeters.com/pH-Storage-Solution-p/s-ssq.htm

A glass electrode alone (i.e., without combined reference electrode) is typically stored immersed in an acidic solution of around pH 3.0. In an emergency, acidified tap water can be used, but distilled or deionised water must never be used for longer-term probe storage as the relatively ionless water “sucks” ions out of the probe membrane through diffusion, which degrades it.

Combined electrodes (glass membrane + reference electrode) are better stored immersed in the bridge electrolyte (often KCl  3 M) to avoid the diffusion of the electrolyte (KCl) out of the liquid junction.

Cleaning and troubleshooting of the glass probes

Occasionally (about once a month), the probe may be cleaned using pH-electrode cleaning solution; generally a 0.1 M solution of hydrochloric acid (HCl) is used, having a pH of one.

In case of strong degradation of the glass membrane performance due to membrane poisoning, diluted hydrofluoric acid (HF < 2 %) can be used to quickly etch (< 1 minute) a thin damaged film of glass. Alternatively a dilute solution of ammonium fluoride (NH4F) can be used. To avoid unexpected problems, the best practice is however to always refer to the electrode manufacturer recommendations or to a classical textbook of analytical chemistry.

Types of pH meters

A pH meter for every industry

pH meters range from simple and inexpensive pen-like devices to complex and expensive laboratory instruments with computer interfaces and several inputs for indicator and temperature measurements to be entered to adjust for the slight variation in pH caused by temperature. Specialty meters and probes are available for use in special applications, harsh environments, etc. Myron L Meters offers a simple pen-style pH meter, analog handheld meters, digital handheld multiparameter meters, and inline monitor/controllers.

Myron L Ultrapen PT2 pH and Temperature Tester

 

 

 

 

 

 

 

 

https://www.myronlmeters.com/Ultrapen-PT2-Multiparameter-Meter-p/dh-up-pt2-ss.htm

ULTRAPEN PT2 pH and Temperature Pen

Accuracy of +/- 0.01 pH

Reliable Repeatable Results

Easy Calibration

Automatic Temperature Compensation

Measures Temperature

Durable, Fully Potted Circuitry

Waterproof

Comes with 2oz bottle of pH Storage Solution

 

 

Myron L AG-6 TDS and pH meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Analog-pH-Conductivity-Meter-p/ah-ds-ag6-fslash-ph.htm

 

Agri-Meter – Ag-6: 0-5 millimhos; 2-12 pH

Instant and accurate TDS tests

Electronic Internal Standard for easy field calibration

Fast Auto Temperature Compensation

Rugged design for years of trouble-free testing

Simple to use

 

Myron L Ultrameter II 6P multiparameter meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Ultrameter-II-6P-Multiparameter-Meter-p/dh-umii-6pii.htm

 

 

Multi-Parameter: Conductivity, TDS, Resistivity, pH, ORP, Temperature, Free Chlorine (FCE)

+/-1% Accuracy of Reading

Memory Storage: Save up to 100 samples w/ Date & Time stamp

Wireless Download Module Optional

Waterproof

 

Myron L 723II digital inline pH monitor/controller

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Inline-pH-Digital-Monitor-Controller-p/i-dmc-723ii.htm

 

The advanced “isolated” circuitry of the 720 Series II pH/ORP Monitor/ controllers guarantees accurate and reliable measurements — completely eliminating ground-loop and noise issues.

 

The unique sensor preamp allows for longer distances between the sensor and the Monitor/controller without the loss of accuracy or reliability.

 

All Myron L Monitor/controllers feature a highly refined and precise Temperature Compensation circuit. This feature perfectly matches the NERNST equation correcting the displayed reading to 25’C. The TC may be disabled to conform to USP requirements.

 

 

Categories : Product Updates, Science and Industry Updates

Myron L Meters Thanks Mill Brook Bonsai!

Posted by 5 Jul, 2012

Tweet Nestled in the foothills of the Green Mountains of Vermont with a trout stream behind the nursery, Mill Brook Bonsai is devoted to the art of Bonsai.  Founded in 1997 after many years as a hobby, the nursery has grown to include native trees, tropical trees and imported trees as well as tools, pots […]

Ultrapenpt2_2

Nestled in the foothills of the Green Mountains of Vermont with a trout stream behind the nursery, Mill Brook Bonsai is devoted to the art of Bonsai.  Founded in 1997 after many years as a hobby, the nursery has grown to include native trees, tropical trees and imported trees as well as tools, pots and accessories.

Come and visit, feed the attack-trained Koi in our small pond and enjoy the quiet and serenity that is associated with this ancient Chinese and Japanese art form.

Mill Brook Bonsai was founded in 1997 after Sandy & Trudy Anderson had spent a number of years as amateur bonsaiists.  The first greenhouse went up in ‘97, the second one, for tropical trees a few years later and then, as the collection grew, a third greenhouse was added.  Much of our initial knowledge came from such folk as Gil Klein, a bonsaiist who moved to VT from the NY area.  Later, Eric Schalk  of Waterbury, VT added his knowledge to our early store of information and then, over the past years, David Easterbrook, Curator of the Bonsai Exhibit at the Montreal Botanical Gardens has graced us with his talents.

Over the years we have been fortunate enough to have guest speakers here such as Suthin Sukolsovisit, Harry Thomlinson, Chase Rosade, Mary Miller, Mike Sullivan, Colin Lewis and a host of others that have added to our own knowledge as well as the members of Green Mountain Bonsai Society who have hosted many of these events.

 We have a large number of trees ranging in price from $45 to $2,000.  There is a tree for every budget and for every environment.  Here is a photograph of recently arrived Chinese Elms in the foreground; Taiwan Figs appear to the front left of the picture.

Myron L Meters is proud to do business with Mill Brook Bonsai.

Please visit us on the web at:

http://www.myronlmeters.com

Facebook:  

http://www.facebook.com/pages/Myron-L-Meters/147455608645777

Google +:    

https://plus.google.com/112342237119950323462

Twitter:      

http://twitter.com/MyronLMeters

Linkedin:    

http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro

Pinterest:    

http://pinterest.com/myronlmeters/

YouTube:    

http://www.youtube.com/myronlmeters

News:          

http://waterindustrynews.com

 

 

Categories : MyronLMeters.com Valued Customers, Uncategorized