Frequently Asked Questions – MyronLMeters.com

Posted by 28 Jan, 2013

TweetHow long will my Standard Solutions and Buffers last? The warranty on all standards and buffers is one year from the date it is manufactured (see the label on the bottle). If the standards and buffers become contaminated by the user pouring test samples back into the bottle or inserting the probe into the bottle […]

How long will my Standard Solutions and Buffers last?

The warranty on all standards and buffers is one year from the date it is manufactured (see the label on the bottle). If the standards and buffers become contaminated by the user pouring test samples back into the bottle or inserting the probe into the bottle the solution will not be accurate and should be discarded. The life of standards and buffers can exceed 1 year if the bottle is stored tightly capped and is not exposed to direct sunlight or freezing temperatures. If the solution becomes frozen, do not remove the cap – allow the standard or buffer solution to thaw completely and shake the bottle vigorously before opening.

How do I clean the conductivity cell cup on the handheld units?

With everyday sampling, the cell cup may build up a residue or film on the cell walls that may cause the readings to become erratic. Use a 50/50 mixture of a common household cleaner (i.e. Lime-A-Way, CLR, Tilex, etc) and DI water. Pour into conductivity cell cup and scrub with a q-tip. Be sure to get around all the electrodes and the thermistor probe. On the DS handheld unit, use an acid brush to scrub the cell cup. Let it set for about 10 minutes. Rinse the cell cup thoroughly with tap water, then a final rinse with DI water.

The display on my Ultrameter II 6P reads “Error 1″. What does that mean?

This is possibly caused by contamination to the circuit board. One or more of the traces on the PCB have been jumped/bridged and there is a contamination. Possible moisture, condensation, dirt, dried salts or other condensation inside is a potential cause for this display.

Where can I get an operations manual for my meter?

Go to MyronLMeters.com. Click on Manuals and Literature at the top of the page. Once on the Manuals and Literature page, you’ll find application bulletins, operations manuals, material safety data sheets, and product datasheets.  All are free, downloadable pdf files.

How do I pick the correct range module for my Monitor or Monitor/Controller?

Pick a range module that covers 2/3 of your operating range. If you pick a range module that is too broad, then your accuracy will suffer or it will not show a number on the display. For example, if your operating range is 100-150 microsiemens, a range module of 0-200 microsiemens (-115) would be a good choice. A range module of 0- 5,000 microsiemens (-123) would not be a good choice for this application

Got questions? Visit us at MyronLMeters.com and Ask An Expert.

 

 

 

 

Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

pH and pH Meters – MyronLMeters.com

Posted by 24 Sep, 2012

TweetWhat is pH? pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions […]

What is pH?

pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Measuring pH for aqueous solutions can be done with a glass electrode and a pH meter, or using indicators.

Measuring pH is important in water treatment, medicine, biology, chemistry, agriculture, forestry, food science, environmental science, oceanography, civil engineering, chemical engineering, and many other applications.

p[H] was first introduced by Danish chemist Søren Peder Lauritz Sørensen at the Carlsberg Laboratory in 1909 and revised to the modern pH in 1924 to accommodate definitions and measurements in terms of electrochemical cells.  According to the Carlsberg Foundation pH stands for “power of hydrogen”.

pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion activity, aH+, in a solution.

pH Meters

A pH meter is an electronic device used for measuring the pH (acidity or alkalinity) of a liquid (though special probes are sometimes used to measure the pH of semi-solid substances). A typical pH meter consists of a special measuring probe (a glass electrode) connected to an electronic meter that measures and displays the pH reading.

The probe

The pH probe measures pH as the activity of the hydrogen cations surrounding a thin-walled glass bulb at its tip. The probe produces a small voltage (about 0.06 volt per pH unit) that is measured and displayed as pH units by the meter. For more information about pH probe care or replacement, please consult your Myron L meter operations manual.

Calibration and use

*Please consult your Myron L meter operations manual before calibrating.

For very precise work the pH meter should be calibrated before each measurement. For normal use calibration should be performed at the beginning of each day. The reason for this is that the glass electrode does not give a reproducible e.m.f. over longer periods of time. Calibration should be performed with at least two standard buffer solutions that span the range of pH values to be measured. For general purposes buffers at pH 4 and pH 10 are acceptable. The pH meter has one control (calibrate) to set the meter reading equal to the value of the first standard buffer and a second control (slope) which is used to adjust the meter reading to the value of the second buffer. A third control allows the temperature to be set. Standard buffer solutions, which can be obtained from MyronLMeters.com here:

http://www.myronlmeters.com/pH-Buffer-Calibration-Solutions-s/82.htm

usually state how the buffer value changes with temperature. For more precise measurements, a three buffer solution calibration is preferred. As pH 7 is essentially, a “zero point” calibration (akin to zeroing a scale), calibrating at pH 7 first, calibrating at the pH closest to the point of interest ( e.g. either 4 or 10) second and checking the third point will provide a more linear accuracy to what is essentially a non-linear problem. Some meters will allow a three point calibration and that is the preferred scheme for the most accurate work, and is recommended by Myron L Meters. Higher quality meters will have a provision to account for temperature coefficient correction, and high-end pH probes have temperature probes built in. The calibration process correlates the voltage produced by the probe (approximately 0.06 volts per pH unit) with the pH scale. After each single measurement, the probe is rinsed with distilled water or deionized water to remove any traces of the solution being measured, blotted with a scientific wipe to absorb any remaining water which could dilute the sample and thus alter the reading, and then quickly immersed in another solution.

Storage conditions of the glass probes

When not in use, the glass probe tip must be kept wet at all times to avoid the pH sensing membrane dehydration and the subsequent dysfunction of the electrode. You can get your sensor storage solution here:

http://www.myronlmeters.com/pH-Storage-Solution-p/s-ssq.htm

A glass electrode alone (i.e., without combined reference electrode) is typically stored immersed in an acidic solution of around pH 3.0. In an emergency, acidified tap water can be used, but distilled or deionised water must never be used for longer-term probe storage as the relatively ionless water “sucks” ions out of the probe membrane through diffusion, which degrades it.

Combined electrodes (glass membrane + reference electrode) are better stored immersed in the bridge electrolyte (often KCl  3 M) to avoid the diffusion of the electrolyte (KCl) out of the liquid junction.

Cleaning and troubleshooting of the glass probes

Occasionally (about once a month), the probe may be cleaned using pH-electrode cleaning solution; generally a 0.1 M solution of hydrochloric acid (HCl) is used, having a pH of one.

In case of strong degradation of the glass membrane performance due to membrane poisoning, diluted hydrofluoric acid (HF < 2 %) can be used to quickly etch (< 1 minute) a thin damaged film of glass. Alternatively a dilute solution of ammonium fluoride (NH4F) can be used. To avoid unexpected problems, the best practice is however to always refer to the electrode manufacturer recommendations or to a classical textbook of analytical chemistry.

Types of pH meters

A pH meter for every industry

pH meters range from simple and inexpensive pen-like devices to complex and expensive laboratory instruments with computer interfaces and several inputs for indicator and temperature measurements to be entered to adjust for the slight variation in pH caused by temperature. Specialty meters and probes are available for use in special applications, harsh environments, etc. Myron L Meters offers a simple pen-style pH meter, analog handheld meters, digital handheld multiparameter meters, and inline monitor/controllers.

Myron L Ultrapen PT2 pH and Temperature Tester

 

 

 

 

 

 

 

 

https://www.myronlmeters.com/Ultrapen-PT2-Multiparameter-Meter-p/dh-up-pt2-ss.htm

ULTRAPEN PT2 pH and Temperature Pen

Accuracy of +/- 0.01 pH

Reliable Repeatable Results

Easy Calibration

Automatic Temperature Compensation

Measures Temperature

Durable, Fully Potted Circuitry

Waterproof

Comes with 2oz bottle of pH Storage Solution

 

 

Myron L AG-6 TDS and pH meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Analog-pH-Conductivity-Meter-p/ah-ds-ag6-fslash-ph.htm

 

Agri-Meter – Ag-6: 0-5 millimhos; 2-12 pH

Instant and accurate TDS tests

Electronic Internal Standard for easy field calibration

Fast Auto Temperature Compensation

Rugged design for years of trouble-free testing

Simple to use

 

Myron L Ultrameter II 6P multiparameter meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Ultrameter-II-6P-Multiparameter-Meter-p/dh-umii-6pii.htm

 

 

Multi-Parameter: Conductivity, TDS, Resistivity, pH, ORP, Temperature, Free Chlorine (FCE)

+/-1% Accuracy of Reading

Memory Storage: Save up to 100 samples w/ Date & Time stamp

Wireless Download Module Optional

Waterproof

 

Myron L 723II digital inline pH monitor/controller

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Inline-pH-Digital-Monitor-Controller-p/i-dmc-723ii.htm

 

The advanced “isolated” circuitry of the 720 Series II pH/ORP Monitor/ controllers guarantees accurate and reliable measurements — completely eliminating ground-loop and noise issues.

 

The unique sensor preamp allows for longer distances between the sensor and the Monitor/controller without the loss of accuracy or reliability.

 

All Myron L Monitor/controllers feature a highly refined and precise Temperature Compensation circuit. This feature perfectly matches the NERNST equation correcting the displayed reading to 25’C. The TC may be disabled to conform to USP requirements.

 

 

Categories : Product Updates, Science and Industry Updates

Conductivity and Conductivity Meters – MyronLMeters.com

Posted by 23 Sep, 2012

TweetThe conductivity (or specific conductance) of a solution is a measure of its ability to conduct electricity. The standard unit of conductivity is siemens per meter (S/m). Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring ionic content in a solution. For example, the […]

The conductivity (or specific conductance) of a solution is a measure of its ability to conduct electricity. The standard unit of conductivity is siemens per meter (S/m).

Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring ionic content in a solution. For example, the measurement of product conductivity is a typical way to monitor and continuously trend the performance of water purification systems.

In many cases, conductivity is linked directly to the total dissolved solids (TDS). High quality deionized water has a conductivity of about 5.5 μS/m, typical drinking water in the range of 5-50 mS/m, while sea water about 5 S/m (i.e., sea water’s conductivity is one million times higher than deionized water).

Conductivity is traditionally determined by measuring the AC resistance of the solution between two electrodes.

Resistivity of pure water (in MΩ-cm) as a function of temperature

The standard unit of conductivity is S/m and usually refers to 25 °C (standard temperature). Often encountered in industry is the traditional unit of μS/cm. 106 μS/cm = 103 mS/cm = 1 S/cm. The numbers in μS/cm are higher than those in μS/m by a factor of 100 (i.e., 1 μS/cm = 100 μS/m). Occasionally a unit of “EC” (electrical conductivity) is found on scales of instruments: 1 EC = 1 μS/cm. Sometimes encountered is a so-called mho (reciprocal of ohm): 1 mho/m = 1 S/m. Historically, mhos antedate Siemens by many decades; good vacuum-tube testers, for instance, gave transconductance readings in micromhos.

The commonly used standard cell has a width of 1 cm, and thus for very pure water in equilibrium with air would have a resistance of about 106 ohm, known as a megohm. Ultra-pure water could achieve 18 megohms or more. Thus in the past megohm-cm was used, sometimes abbreviated to “megohm”. Sometimes conductivity is given just in “microSiemens” (omitting the distance term in the unit). While this is an error, it’s usually assumed to be equal to the traditional μS/cm. The typical conversion of conductivity to the total dissolved solids is done assuming that the solid is sodium chloride: 1 μS/cm is then an equivalent of about 0.6 mg of NaCl per kg of water.

A conductivity meter and probe

The electrical conductivity of a solution is measured by determining the resistance of the solution between two flat or cylindrical electrodes separated by a fixed distance. An alternating voltage is used in order to avoid electrolysis. The resistance is measured by a conductivity meter. Typical frequencies used are in the range 1–3 kHz. The dependence on the frequency is usually small, but may become appreciable at very high frequencies, an effect known as the Debye–Falkenhagen effect.

A wide variety of instrumentation is commercially available. There are two types of cell, the classical type with flat or cylindrical electrodes and a second type based on induction. Many commercial systems, Myron L meters, e.g.,  offer automatic temperature correction.

MyronLMeters.com offers many reliable conductivity meters – some analog, some digital, some pen-style, some multiparameter – but all accurate, reliable, and easy-to-use.

Myron L analog handheld conductivity meter 512M5

 

 

 

 

 

 

 

 

 

Analog Handheld conductivity meter

512M5: 0-5000 micromhos/microsiemens

Instant and accurate Conductivity tests

Electronic Internal Standard for easy field calibration

Fast Auto Temperature Compensation

Rugged design for years of trouble-free testing

Simple to use

 

Myron L Digital Handheld Conductivity, TDS, Salinity Pen

 

 

 

 

 

 

 

 

 

Digital Handheld Conductivity, TDS, Salinity Pen

ULTRAPEN PT1 Conductivity – TDS – Salinity Pen

Accuracy of +/-1% of READING (+/-.2% at Calibration Point)

Reliable Repeatable Results

Solution modes: KCl, NaCl and 442

Automatic Temperature Compensation

Autoranging

Durable, Fully Potted Circuitry

Waterproof

 

Myron L Digital Handheld Multiparameter Meter: Ultrameter 6P II FCe

 

 

 

 

 

 

 

 

 

Digital Handheld Multi-Parameter meter: Conductivity, TDS, Resistivity, pH, ORP, Temperature, Free Chlorine (FCE)
+/-1% Accuracy of Reading
Memory Storage: Save up to 100 samples w/ Date & Time stamp
Wireless Download Module Optional
Waterproof

 

Myron L digital inline conductivity monitor/controller 758II

 

 

 

 

 

 

 

 

 

Digital In-Line Conductivity Monitor/Controller

The unique circuitry of our 750 Series II Conductivity Inline Meters guarantees accurate and reliable measurements. Drift-free performance is assured by “field proven” electronics, including automatic DC offset compensation and highly accurate drive voltage.

Since Temperature Compensation is at the heart of accurate water measurement, all Myron L Monitor/controllers feature a highly refined and precise TC circuit. This feature perfectly matches the water temperature coefficient as it changes. All models are corrected to 25’C. The TC may be disabled to conform to USP requirements.

 

 

Categories : Product Updates, Technical Tips

Myron L Meters Thanks The U.S. Dept. of Veteran’s Affairs!

Posted by 3 Jul, 2012

Tweet VA History The United States has the most comprehensive system of assistance for veterans of any nation in the world. This benefits system traces its roots back to 1636, when the Pilgrims of Plymouth Colony were at war with the Pequot Indians. The Pilgrims passed a law which stated that disabled soldiers would be […]

Dh-umii-6pii-2

VA History

The United States has the most comprehensive system of assistance for veterans of any nation in the world. This benefits system traces its roots back to 1636, when the Pilgrims of Plymouth Colony were at war with the Pequot Indians. The Pilgrims passed a law which stated that disabled soldiers would be supported by the colony.

The Continental Congress of 1776 encouraged enlistments during the Revolutionary War by providing pensions for soldiers who were disabled. Direct medical and hospital care given to veterans in the early days of the Republic was provided by the individual States and communities. In 1811, the first domiciliary and medical facility for veterans was authorized by the Federal Government. In the 19th century, the Nation’s veterans assistance program was expanded to include benefits and pensions not only for veterans, but also their widows and dependents.

After the Civil War, many State veterans homes were established. Since domiciliary care was available at all State veterans homes, incidental medical and hospital treatment was provided for all injuries and diseases, whether or not of service origin. Indigent and disabled veterans of the Civil War, Indian Wars, Spanish-American War, and Mexican Border period as well as discharged regular members of the Armed Forces were cared for at these homes.

Congress established a new system of veterans benefits when the United States entered World War I in 1917. Included were programs for disability compensation, insurance for service persons and veterans, and vocational rehabilitation for the disabled. By the 1920s, the various benefits were administered by three different Federal agencies: the Veterans Bureau, the Bureau of Pensions of the Interior Department, and the National Home for Disabled Volunteer Soldiers.

The establishment of the Veterans Administration came in 1930 when Congress authorized the President to “consolidate and coordinate Government activities affecting war veterans.” The three component agencies became bureaus within the Veterans Administration. Brigadier General Frank T. Hines, who directed the Veterans Bureau for seven years, was named as the first Administrator of Veterans Affairs, a job he held until 1945.

The VA health care system has grown from 54 hospitals in 1930, to include 152 hospitals; 800 community based outpatient clinics; 126 nursing home care units; and 35 domiciliaries. VA health care facilities provide a broad spectrum of medical, surgical, and rehabilitative care. The responsibilities and benefits programs of the Veterans Administration grew enormously during the following six decades. World War II resulted in not only a vast increase in the veteran population, but also in large number of new benefits enacted by the Congress for veterans of the war. The World War II GI Bill, signed into law on June 22, 1944, is said to have had more impact on the American way of life than any law since the Homestead Act of 1862. Further educational assistance acts were passed for the benefit of veterans of the Korean Conflict, the Vietnam Era, Persian Gulf War, Iraq and Afghanistan wars.

In 1973, the Veterans Administration assumed another major responsibility when the National Cemetery System (except for Arlington National Cemetery) was transferred to the Veterans Administration from the Department of the Army. The Agency was charged with the operation of the National Cemetery System, including the marking of graves of all persons in national and State cemeteries (and the graves of veterans in private cemeteries, upon request) as well and administering the State Cemetery Grants Program. The Department of Veterans Affairs (VA) was established as a Cabinet-level position on March 15, 1989. President Bush hailed the creation of the new Department saying, “There is only one place for the veterans of America, in the Cabinet Room, at the table with the President of the United States of America.”

In 2009, President Obama appointed Secretary Eric K. Shinseki to lead a massive transformation of the VA into a high-performing 21st century organization that can better serve Veterans. Under the leadership of Secretary Shinseki, the VA has adopted three guiding principles to govern the changes underway, namely being people-centric, results-driven, and forward-looking. These principles are reflected in the 16 major initiatives that serve as a platform from which transformation is being executed.

The 16 major initiatives are:

Eliminating Veteran homelessness

Enabling 21st century benefits delivery and services

Automating GI Bill benefits

Creating Virtual Lifetime Electronic Record

Improving Veterans’ mental health

Building Veterans Relationship Management capability to enable convenient, seamless interactions

Designing a Veteran-centric health care model to help Veterans navigate the health care delivery system and receive coordinated care

Enhancing the Veteran experience and access to health care

Ensuring preparedness to meet emergent national needs

Developing capabilities and enabling systems to drive performance and outcomes.

Establishing strong VA management infrastructure and integrated operating model

Transforming human capital management

Performing research and development to enhance the long-term health and well-being of Veterans

Optimizing the utilization of VA’s Capital portfolio by implementing and executing the Strategic Capital Investment Planning (SCIP) process

Improving the quality of health care while reducing cost

Transforming health care delivery through health informatics

Myron L Meters is proud to do business with the VA.

 

Please visit us on the web at:

http://www.myronlmeters.com

Facebook:

http://www.facebook.com/pages/Myron-L-Meters/147455608645777

Twitter:

http://twitter.com/MyronLMeters

Google +:

https://plus.google.com/i/0gw_uw5P328:dbK-UM_4xek

Linkedin:

http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro 

YouTube:

http://www.youtube.com/myronlmeters

News:

http://waterindustrynews.com

 

 

 

Categories : MyronLMeters.com Valued Customers

Myron L Company Weftec Video.flv

Posted by 22 Nov, 2011

TweetDan Robinson, Myron L North American Sales Manager, describes the features of the Ultrapen PT-1 and the Ultrameter III 9P. Both of these are available at http://MyronLMeters.com. Please visit us on the web at: http://www.myronlmeters.com Facebook: http://www.facebook.com/pages/Myron-L-Meters/147455608645777 Google +: https://plus.google.com/112342237119950323462 Twitter: http://twitter.com/MyronLMeters Linkedin: http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro YouTube: http://www.youtube.com/myronlmeters News: http://waterindustrynews.com As with all Myron L meters, these […]

Want to be the first to hear about new videos?
Enter your email to sign up
Watch on YouTube: http://www.youtube.com/watch?v=9TDZsMTHG4U

Dan Robinson, Myron L North American Sales Manager, describes the features of the Ultrapen PT-1 and the Ultrameter III 9P.

Both of these are available at http://MyronLMeters.com.

Please visit us on the web at:
http://www.myronlmeters.com

Facebook: http://www.facebook.com/pages/Myron-L-Meters/147455608645777

Google +: https://plus.google.com/112342237119950323462
Twitter: http://twitter.com/MyronLMeters

Linkedin: http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro

YouTube: http://www.youtube.com/myronlmeters

News: http://waterindustrynews.com

As with all Myron L meters, these are available at http://MyronLMeters.com

Please visit us on the web at:
http://www.myronlmeters.com

Facebook: http://www.facebook.com/pages/Myron-L-Meters/147455608645777

Google +: https://plus.google.com/112342237119950323462
Twitter: http://twitter.com/MyronLMeters

Linkedin: http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro

YouTube: http://www.youtube.com/myronlmeters

News: http://waterindustrynews.com

Categories : Videos

Easy steps to troubleshoot RO and DI water systems

Posted by 12 Mar, 2011

Tweet   How much downtime can you afford?   If you are managing an inline water filtration system such as a reverse osmosis system (RO) or a Deionized water system (DI), then you probably have instrumentation installed in order to monitor the water quality. You rely on the instruments to give accurate and reliable readings, […]

 

Qr-logo

How much downtime can you afford?

 

If you are managing an inline water filtration system such as a reverse osmosis system (RO) or a Deionized water system (DI), then you probably have instrumentation installed in order to monitor the water quality. You rely on the instruments to give accurate and reliable readings, but what happens when the water quality measurements suddenly change? If, For example, the conductivity or TDS numbers are substantially higher or the resistivity reading drops to a low number over night.

 

There are a few things you can do to validate your filtration system and pinpoint the issue. Some RO and DI water systems have sample valves or ports after each filter, so you can draw a water sample and test it. If your water system is set up this way, lucky you! If not, you should consider installing a sample valve or port after each filter in order to test the water quality and performance of the filters.

 

If your water quality measurements suddenly change, the first thing you can do is use a reliable and accurate handheld instrument to test the water quality and compare the readings to your inline instrumentation. Conductivity or TDS measurements are a good indicator of changes in water quality Resistivity measurements are good for DI water systems. Draw a sample of water from your system as close as possible to the location of your inline sensor or probe. If the measurements from your handheld and your inline monitor match then you can begin to troubleshoot your RO or DI water system. If the readings don’t match, you need to troubleshoot your inline monitor to resolve the issue. Contact the supplier of your inline monitor and explain to them that you have verified the water quality of your system with an independent handheld instrument. From there you can diagnose the problem with the inline monitor.

 

Troubleshoot your RO and DI water filtration systems

 

To pinpoint the problem, test at various points throughout your water system. Take conductivity/TDS measurements and record the readings in a data log to identify trends in your water quality. This can help you to evaluate filter and system performance in the future. If you already have these readings, then troubleshooting should be quick and easy.You may be reading this right now because you need to troubleshoot and are not exactly sure where to begin or you don’t have measurement records. In that case, you’ll need to begin sampling the water to identify the issue with the water quality.

 

If you have previously recorded measurements logged…

 

Sample the water before and after each filter, compare the conductivity/TDS measurements to your previous measurements and see if there is a big difference. If so, you may have identified the problem. Continue to do this until you have checked each filter. Replace the ones that are out of performance specification.

 

If you DO NOT have previous recorded measurements logged…

 

Sample the water before and after each filter. Check with the filter manufacturer about the performance specification for each filter. They should be able to tell you the rejection rate, throughput, etc. From there you can determine if the filter is performing to spec based on the before/after measurements. Once you have identified which filter(s) is out of spec, you can begin replacing or changing them.

 

if you do not have a handheld instrument to validate your RO or DI water system, we recommend the Ultrameter II 6P. If you don’t need to test pH or ORP, then get the Ultrameter II 4P. These meters have been used to validate various water systems worldwide,  and are renowned for their accuracy, reliability, and ease of use.

You can check out the Ultrameter II here and save 10% if you order online: http://www.myronlmeters.com/category-s/55.htm

 

More information available at MyronLMeters.com

 

Tags: MyronLMeters.com, Myron L, Ultrameter, Myron L Ultrameter, reverse osmosis, deionized water, RO, DI, water filtration, filtration sytems, water systems 

Categories : Application Advice, Technical Tips

MyronLMeters.com Announces the Arrival of the Myron L Ultrameter III 9P

Posted by 17 Feb, 2011

MyronLMeters.com today announced the arrival of a new Myron L product, the Myron L Ultrameter III, a reliable, easy-to-use meter that measures 9 parameters – conductivity, resistivity, TDS, alkalinity, hardness, saturation index, ORP/free chlorine, pH and temperature.

Myron L Ultrameter III 9P

MyronLMeters.com today announced the arrival of a new Myron L product, the , Myron L Ultrameter III 9P , a reliable, easy-to-use meter that measures 9 parameters – conductivity, resistivity, TDS, alkalinity, hardness, saturation index, ORP/free chlorine, pH and temperature.

“The Ultrameter III is available right now at MyronLMeters.com,” said James Rutan, president. “We’ve made it easy to order, offer great training videos, technical bulletins, manuals, and a 10% discount…just for ordering online. In addition, all Myron L Meters in stock will ship the next business day. The quality of the Ultrameter III and the company’s great reputation for reliable meters is sure to make this a big hit. Don’t forget – this new Ultrameter has wireless data transfer capability when you buy the bluDock.  Expect about a 10 day lead time for a week or so.”

MyronLMeters.com carries the full line of Ultrameter III accessories, including the Ultrameter III 9PTK AHL Titration kit, soft protective case, replacement sensors, and the full line of standard solutions and buffers – all at a 10% discount when you order online.

Myron L meters are renowned for their accuracy, reliability, and ease of use, and have applications in automatic rinse tank controls, boiler and cooling towers, circuit board cleanliness testing, deionized water, environmental applications, fountain solutions, dialysis, horticulture, hydroponics, ORP (oxidation reduction potential)/Redox, pool and spa, reverse osmosis, textiles.

MyronLMeters.com has a well-established web presence on Facebook, Gravatar, Twitter, Squidoo, LinkedIn, and WordPress. MyronLMeters.com encourages customers to join them on these sites for special offers and discounts.

Tags: MyronLMeters.com, Myron L, Myron L meters, Ultrameter III, conductivity, resistivity, TDS, alkalinity, hardness, saturation index, ORP/free chlorine, pH and temperature, automatic rinse tank controls, boiler and cooling towers, circuit board cleanliness testing, deionized water, environmental applications, fountain solutions, dialysis, horticulture, hydroponics, ORP (oxidation reduction potential)/Redox, pool and spa, reverse osmosis, textiles

Categories : Product Updates

Gardens Cure on the Myron L Ultrameter

Posted by 7 Feb, 2011

Tweethttp://www.gardenscure.com/420/product-reviews/143397-myron-l-ultrameter-6p.html Myron-L Ultrameter 6P permalink Over the years I have spent a lot of money on meters. When I first started I bought $25 meters off of e-bay.. They worked ok and lasted about a year. After realizing how critical it can be to have a reliable meter at times I decided to invest in […]

http://www.gardenscure.com/420/product-reviews/143397-myron-l-ultrameter-6p.html

Myron-L Ultrameter 6P permalink


Over the years I have spent a lot of money on meters. When I first started I bought $25 meters off of e-bay.. They worked ok and lasted about a year. After realizing how critical it can be to have a reliable meter at times I decided to invest in better meters.. I tried most brands out there some of them cost $250-$300.. All of them failed over 1-2 years.. I decided to invest some real money in a meter to get something that was well built ..

At my work there is a water treatment company that treats water for the chillers, cooling towers and the hydronic heating loop. The dude that maintains this is very knowledgeable about water treatment and I saw him taking readings with the Myron-L. I was asking him about it and he said hes had that meter for 5 years and has never replaced the probe. Its still accurate and works properly and he uses it in a commercial application that gets much more use and abuse than growers put their meters through. He probably takes 50 readings a day with it and that water has some crazy oxygen scavengers and biocides in it.

I was sold but the only thing was its … price tag… I bought one anyways about 2 years ago and it works perfect every time.. Im sure I will have this meter for a long time. I read some of the grow journals on here and with as big as some of your gardens are Im sure some of you could afford a meter like this lol. If you want a die hard meter then this is the way to go…

Available now at http://www.myronlmeters.com/ProductDetails.asp?ProductCode=DH-UMII-6PII.

Categories : Uncategorized

6 Tips for Measuring pH of Pure DI Water

Posted by 28 Dec, 2010

TweetMeasuring the pH of pure DI water is easy when you know what to expect. In theory, pure water should have a pH of 7. When you actually measure the pH, it will most likely fall between 5.5 and 7 due to its absorption of CO2 from the atmosphere. This natural occurrence forms carbonic acid […]

Measuring the pH of pure DI water is easy when you know what to expect. In theory, pure water should have a pH of 7. When you actually measure the pH, it will most likely fall between 5.5 and 7 due to its absorption of CO2 from the atmosphere. This natural occurrence forms carbonic acid in the water, lowering the pH. Since DI water is pure, there is nothing to buffer it and stabilize the pH. Below are a few tips to increase the accuracy of your pH measurements.

Tips for accurate pH readings

  1. First and foremost, use a high quality ph meter and ensure that it is properly calibrated with pH buffer solution. Check the manufacturer’s recommendations for calibration. The Ultrameter II 6P and the Techpro II TPH1 are portable pH meters that are extremely accurate and easy to use.
  2. When using a portable pH meter, avoid cross-contamination by thoroughly rinsing with the DI water that you will be sampling. If a glass beaker or cup is to be used, rinse that as well.
  3. Use small samples and minimize exposure to air, as this will lower the pH value. Taking samples from an open-air drum or tank will typically give erroneous readings. Collect samples from a sample port if possible.
  4. If you have access to high-purity reagent grade KCl (Potassium Chloride) salts, then you can buffer the DI water to stabilize the pH. Adding a tiny amount to the pure DI water sample will increase the ionic strength and reduce the absorption of CO2 from the atmosphere. Be careful not to contaminate the KCl salts. Use proper tools/utensils to add the KCl salts
  5. If no salt is available and all you need is a quick check of your system, you can flow the water from a sample port into your portable pH meter to measure the pH values. This will take slightly longer to stabilize. Be sure to use an accurate, waterproof pH meter and hold it closely to the sample port.
  6. Changes in temperature can affect the pH. Use a pH meter that is temperature compensated to remedy this issue.

If you need pH buffer solution, you can find it here at an affordable price.

Categories : Application Advice, Technical Tips