Thank You Myron L Meters Customers 2013: MyronLMeters.com

Posted by 7 Dec, 2013

Tweet Myron L Meters is proud to be the premier internet retailer of Myron L Ultrameters, Ultrapens, and other fine products. Myron L meters have a well-earned reputation for being accurate, reliable, and easy-to-use. We’d like to thank the following 2013 customers who ordered for the first time through our MyronLMeters.com website, as well as the hundreds […]

Myron L Meters is proud to be the premier internet retailer of Myron L Ultrameters, Ultrapens, and other fine products. Myron L meters have a well-earned reputation for being accurate, reliable, and easy-to-use. We’d like to thank the following 2013 customers who ordered for the first time through our MyronLMeters.com website, as well as the hundreds not listed here. Thank you for your business.

COMPANIES
NESTLE
COCA-COLA
DUPONT
TARGET
INTERNATIONAL PAPER
PANASONIC
SIERRA NEVADA
BAYER
GENERAL MILLS
PEPSI
FUJIFILM
CULLIGAN
VEOLIA
NALCO
GLAXO SMITH KLINE
BP
DUPONT
MICHELIN
ALCOA
TYSON
SMUCKER’S
GOOGLE
DUKE ENERGY
HILLSHIRE FARMS

MEDICAL ORGANIZATIONS
DAVITA
FRESENIUS
UC IRVINE MEDICAL CENTER
RED BUD REGIONAL HOSPITAL
HALIFAX REGIONAL HOSPITAL
ELIK DIALYSIS CENTER

GOVERNMENT ORGANIZATIONS
OAK RIDGE NATIONAL LABORATORY
BROOKHAVEN NATIONAL LABORATORY
PACIFIC NORTHWEST NATIONAL LABORATORY
FERMILAB
US NAVY
VETERANS ADMINISTRATION

EDUCATIONAL INSTITUTIONS
USC
BRYN MAWR
TULANE
UNIVERSITY OF ARKANSAS
IDAHO STATE UNIVERSITY
UNIVERSITY OF DELAWARE
UNIVERSITY OF COLORADO
UNIVERSITY OF WYOMING
UNIVERSITY OF REDLANDS
LAWRENCE UNIVERSITY

We hope that Myron L Meters has helped your organization continue its fine work. Thanks from the Myron L Meters team and have a great 2014!

Categories : MyronLMeters.com Valued Customers

End of Year Sale

Posted by 4 Dec, 2013

Tweethttp://us2.campaign-archive1.com/?u=8c3e1105d354c0c814b53a0e0&id=f52da0f404&e=UNIQID

http://us2.campaign-archive1.com/?u=8c3e1105d354c0c814b53a0e0&id=f52da0f404&e=UNIQID

Categories : Deal of the Month, MyronLMeters.com Valued Customers

The Ultrameter II™ in Disaster Response: MyronLMeters.com

Posted by 29 Oct, 2013

TweetWhen disaster strikes, people are scared and disorganized. They need resources — safe water and proper sanitation — that aren’t easy to come by in the aftermath. Without the help of humanitarian organizations to provide assistance, large populations of survivors are subject to epidemics of cholera, diarrhea, meningitis, and other diseases as they struggle to […]

Ultrameter II 6P

Ultrameter II 6P

When disaster strikes, people are scared and disorganized. They need resources — safe water and proper sanitation — that aren’t easy to come by in the aftermath. Without the help of humanitarian organizations to provide assistance, large populations of survivors are subject to epidemics of cholera, diarrhea, meningitis, and other diseases as they struggle to meet these basic needs.

Qualified Help
Dr. Roddy Tempest, a leading designer and manufacturer of water purification systems has headed the efforts of public and private aid organizations, such as the United Nations and AmeriCares, in responding to people in crisis all over the world for over 15 years.

Dr. Tempest contributed his expertise and experience in such situ- ations as the aftermath of Hurricane Andrew in 1992, the Kosovar refugee crisis in the Balkans, the devastating earthquakes in Tur- key and the flood and mudslides that ravaged the coastal states of Venezuela in 1999. He has assisted in disaster relief efforts in Japan, Africa, Central America, and Taiwan, as well.

So when AmeriCares launched its water purification program for the inhabitants of Sri Lanka following the devastation of the tsunami on December 26, 2004, it turned to Dr. Tempest.

For this heroic effort, Dr. Tempest used two Ultrameter II 6P portable, handheld water testing instruments. Dr Tempest said the instruments gave him “a good, quick first-brush assessment of the possible water sources.”

The Ultrameter II reported and recorded instant precise measurements of Conductivity, Resistivity, TDS, ORP (REDOX), pH, and Temperature. But creating a livable situation for hundreds of thousands of displaced survivors wasn’t as easy as testing the water.

Water Doctor to the Rescue
From his offices in the United States, Dr. Tempest responded to the call for help by first reviewing satellite maps that showed the location of potential water sources in relation to groups of survivors, or Internally Displaced Persons (IDPs). He assessed the total situation of the potential water sources, trying at a glance to deter- mine possible contamination by flooding or infiltration of seawater. Upon his arrival in Sri Lanka, Dr. Tempest worked 24 hours a day to determine a suitable survival supply of water for the IDPs. As indicated in the World Health Organization’s Environmental Health in Emergencies and Disasters, the required water per person per day is 15 liters / 3.963 gallons.

Faced with this daunting task, Dr. Tempest surveyed the land via helicopter and fixed wing aircraft to record the extent of the damage, the location of IDPs, and the viability of potential water sources. Some of the photographs reveal the mammoth challenge he had ahead of him. Debris lay everywhere, indicating the likelihood of surface water and well contamination. Filtration was a must.

Dr. Tempest then combined satellite imagery, the photographs and sketches of water sources from his survey and a list of supplies to determine which water sources would be targeted for testing.

Following World Health Organization guidelines, Dr. Tempest considered as many potential water sources as possible, not just the most obvious ones. These included surface and groundwater near the groups of IDPs and tankered or bottled water brought in from a distance – though this would not be suitable for the long- term supply. The preferred source would have been groundwater, especially for the long-term.

Ultrameter II in Action
Dr. Tempest used the Ultrameter II 6P to screen these sources for their potential disinfection and filtering.
First, Dr. Tempest considered whether or not potential water sources could be protected from pollution and secured. Any potential source water had to be filterable and sanitizable. If the water was brackish, it would require a certain treatment method. If it was high in turbidity, then it would require another. If the pH needed adjusting, then yet another. If the source water was not easily treatable, then the source had to be discarded as an option and a better alternative found.

The Ultrameter II provided Dr. Tempest with fast, reliable, accurate initial information on whether or not to pursue further testing and treatment of a potential source. Dr. Tempest used a multiparameter approach and tested for Total Dissolved Solids (TDS), pH, ORP (REDOX), and temperature (recorded with every reading taken.) He also tested for turbidity and bacteria using other instrumentation.

Initially, Dr. Tempest used a measurement of the mineral salt concentration using TDS calibrated to a sodium chloride solution and TDS calibrated to a natural water standard.

Right away Dr. Tempest knew whether or not the water was too saline or saturated to be filtered  economically. If the TDS is too high, filtration systems that work by reverse osmosis can be overwhelmingly expensive to operate in a disaster area, especially considering electrical costs alone. At the very least, the systems become less efficient as the TDS increases and a burden in operation and maintenance costs. This is critical for the short-term disaster response, where Dr. Tempest has to get as much safe water to IDPs in as short amount of time as possible.

High TDS can also indicate an unacceptable level of specifically known inorganic contaminants caused by industrial pollution.
And though it is not a health consideration, high TDS water often has an unpleasant taste that deters people from using it. People may try to return to old wells or other sources of previously safe drinking water that have been contaminated in the disaster. The old source may be more trusted than one that tastes “polluted.” So even though TDS is a secondary water quality standard, it can profoundly impact whether or not the new source is acceptable.

Dr. Tempest also took instant electronic pH readings using the Ultrameter II. The pH directly affects the potential to disinfect the water. pH levels beyond 8 will require substantial increases in the amount of disinfectant required or the length of time the water must be disinfected before safe consumption. And at a pH beyond 9, a residual disinfectant is extremely difficult to maintain.

pH is also critical in the long-term disaster recovery planning. pH that is too low or too high affects water balance, as well, and can contribute to either corrosion or scaling of filtration and disinfection system components and plumbing. An electronic meter is the best choice in this application as compared to colored strips or solutions or other colorimetric methods that do not produce the accuracy required to consistently and correctly balance water and maintain proper disinfection levels. The more precisely the pH is maintained, the less costly safe water production is.

Dr. Tempest also took quick ORP (REDOX) measurements using the Ultrameter II. ORP (REDOX) is the oxidation reduction potential of the water and indicates the state of the water for gaining or losing electrons. Unlike pH, which measures the water’s ability to donate or receive hydrogen ions, ORP (REDOX) values reflect the presence of all oxidizing and reducing agents — not just acids and bases. Initially, the ORP (REDOX) value gave Dr. Tempest a rough idea of the organic load in the water. A reading of 650 mV or greater indicated good water quality that could effectively be sanitized by a minimal amount of free chlorine. A value like 250 mV indicated that the organic contaminants would significantly increase chlorine demand and thereby significantly increase operation and management costs.

ORP (REDOX) is not only a good first indicator about the viability of a water source, but it also is the best way of measuring the disinfectant present in the water after treatment has begun.

Putting It All Together
Using all of the results from these parameters and based on his knowledge of the location of IDPs in relation to potential water sources, Dr. Tempest decided which source would satisfy the needs of each specific location of groups of IDPs. Where possible, water treatment technology would be designed around the quality of the source waters tested where IDPs had gathered, since it was not practical to re-locate large groups of people to distant water sources. Unfortunately, in the case of the Tsunami in Sri Lanka, oftentimes the water closest to IDPs could not be filtered and relocation was necessary.

Dr. Tempest found after his first quick assessment of potential water sources that it was not practical to supply the IDPs in parts of the Batticoloa and Ampara Districts along the eastern coast, because the source water was too saline from seawater intrusion. With limited electricity, this
made the use of reverse osmosis or desalination equipment impractical.

He ended up settling on sites that were more inland, using source waters from man-made reservoirs. IDPs were then settled inland near the cleaner water source.

However, the water in the man-made reservoirs was heavily contaminated with toxic blue-green algae.

Dr. Tempest chose microfiltration and ultrafiltration water treatment systems in the eastern district locations, taking algae-infested water over the salt-saturated, so that treatment and operation costs would be significantly less. Dr. Tempest designed, built and commissioned 4 large transportable water treatment systems, each capable of producing over 500,000 liters/day.

Plans then continued to follow through with long-term water treatment using the Tempest Environmental Systems equipment for the Sri Lankan Ministry of Urban Development and Water Supply and their National Water Supply & Drain- age Board (NWSDB). The NWSDB has 14 Ultrameter II 6Ps in current use in Sri Lanka, which are providing continuing confidence checks to ensure system equipment remains up and running properly.

The Ultrameter II 6P is an excellent multiparameter water quality meter used by thousands of water treatment professionals. The instrument can test for pH, total dissolved solids, conductivity, resistivity, oxidation reduction potential, temperature, and has the capability of testing for free chlorine. This meter handles the job of SIX single parameter testers using one single water sample. Save 10% on the Ultrameter II 6P at MyronLMeters.com.

 

 

Categories : Case Studies & Application Stories

Using LSI to preserve an Arizona treatment plant’s distribution systems

Posted by 16 Aug, 2013

Tweet                    The first thing anyone who manages water and wastewater learns is that water is the universal solvent. Because of the unique properties of that dihydrogen monoxide molecule, owing to the extreme electronegativity of the oxygen atom, water is highly polarized and dissolves almost everything with […]

Myron L Ultrameter II 6P

 

 

 

 

 

 

 

 

 

 

The first thing anyone who manages water and wastewater learns is that water is the universal solvent. Because of the unique properties of that dihydrogen monoxide molecule, owing to the extreme electronegativity of the oxygen atom, water is highly polarized and dissolves almost everything with which it comes into contact. This fact is important when one has to maintain equipment and structures that process and distribute water because what the water has dissolved in it can cause it to be corrosive or scaling. What water generally has dissolved in it is at least some carbon dioxide and some calcium carbonate.

Carbon dioxide is ubiquitous and dissolves at the surface of the water, forming carbonic acid in solution. Calcium carbonate, dissolved by the carbonic acid, is globally present in rock formations (limestone), as well as in the physiological structures of organisms (particularly oceanic organisms) that excrete it. Calcium carbonate in its various forms is also used to buffer pH and stabilize solution in process control. Managing the calcium carbonate equilibrium becomes critical to managing any water and wastewater treatment process.

Too little calcium carbonate yields water that is not saturated and may cause corrosion and deteriorate equipment and structures. A supersaturated solution will likely precipitate calcium carbonate, causing scale, reducing efficiency and eventually leading to system failure.

LSI in AZ

One method for analyzing and managing corrosion and scale deposition of water is to use the Langelier Saturation Index (LSI). In Scottsdale, Ariz., Gary Lyons is managing LSI at his water treatment facility using the Myron L Ultrameter II 6P.

His drinking water treatment plant takes 70 million gal per day (mgd) of water from the Central Arizona Project canal and treats it for residential and commercial use. Within the 143-acre campus, the plant processes 20 mgd to of wastewater from the city of Scottsdale collection system using microfiltration and reverse osmosis (RO). Water coming from the RO treatment process is acidic around pH 5.5. It is then moved to decarbonation towers and lime is added to bring the LSI value close to zero. The water reclamation plant features 8 mgd of storage capacity. Recycled water treated by the plant is used for the irrigation of 20 Scottsdale golf courses.

There is great concern about how the water balance will affect this distribution system over time, especially due to higher total dissolved solids values. Plant technicians compute LSI values in the field with the 6Psi hand-held to determine what adjustments should be made and how in real time. The LSI calculator allows them to perform what-if scenarios on changes in pH, alkalinity, hardness and temperature. They are able to measure the effects of changes immediately as well in the facility and at distribution points.

Hardness and alkalinity are variables in the LSI calculation because they account for the availability of calcium in various forms in the water. Variables such as temperature and pH contribute to the likelihood of the formation of calcium carbonate.

The version of the LSI calculation used by the 6Psi LSI calculator is:

LSI = pH + TF + CF + AF – 12.1

In this calculation, pH = the measured value of pH in pH units; TF = 0.0117 x temperature – 0.4116; CF = 0.4341 x ln(Hrd) – 0.3926; and AF = 0.4341 x ln(AL) – 0.0074.

The first thing anyone who manages water and wastewater learns is that water is the universal solvent. Because of the unique properties of that dihydrogen monoxide molecule, owing to the extreme electronegativity of the oxygen atom, water is highly polarized and dissolves almost everything with which it comes into contact. This fact is important when one has to maintain equipment and structures that process and distribute water because what the water has dissolved in it can cause it to be corrosive or scaling. What water generally has dissolved in it is at least some carbon dioxide and some calcium carbonate.

Carbon dioxide is ubiquitous and dissolves at the surface of the water, forming carbonic acid in solution. Calcium carbonate, dissolved by the carbonic acid, is globally present in rock formations (limestone), as well as in the physiological structures of organisms (particularly oceanic organisms) that excrete it. Calcium carbonate in its various forms is also used to buffer pH and stabilize solution in process control. Managing the calcium carbonate equilibrium becomes critical to managing any water and wastewater treatment process.

Too little calcium carbonate yields water that is not saturated and may cause corrosion and deteriorate equipment and structures. A supersaturated solution will likely precipitate calcium carbonate, causing scale, reducing efficiency and eventually leading to system failure.

Indicator Analysis

LSI has been useful as a scaling/corrosion indicator in municipal water treatment for more than 70 years. The original Langelier Saturation (or Stability) Index calculation was developed by Dr. Wilfred Langelier in 1936 to be used as a tool to develop strategies to counteract corrosion of plumbing in municipal water distribution systems. It is a statement about the change in pH required to bring the calcium carbonate in water to equilibrium. LSI is a measure of the disparity between the pH of the system and the pH at which the system is saturated with calcium carbonate: LSI = pH – pH of saturation.

As such, the LSI indicates the change in pH required to bring water to equilibrium. If the LSI is +1, then the pH needs to be lowered by one unit to bring the water to equilibrium. If the LSI is -1, the pH needs to be raised by one unit to bring the water to equilibrium.

A positive saturation index means that the pH of the water is above equilibrium. The water is scaling because as pH increases, total alkalinity concentration increases. This is due to an increase in the carbonate ion, which bonds with calcium ions present in solution to form calcium carbonate (reference the carbonic acid equilibrium, in which hydrogen ions bond with carbonate ions to form bicarbonate and hydrogen ions bond with bicarbonate to form carbonic acid). Thus, any positive value for LSI is scaling.

If the pH is less than the pH of saturation, the index will be negative, which is corrosive. This means that the water is more acidic than it would be at equilibrium. There are less carbonate ions present, according to the carbonic acid equilibrium. The water will be aggressive because it has room for more ions in solution. Thus, any negative value for LSI indicates that the water may tend to be corrosive.

The use of LSI as an indicator is well documented and time-tested. Managing water balance through LSI analysis will prevent loss of efficiency and failure of equipment and structures, saving time and money.

Myron L Meters is the premier online internet retailer of the Myron L Ultrameter II 6P.  Find out more about the Ultrameter II 6P here:

https://www.myronlmeters.com/Myron-L-6P-Ultrameter-II-Multiparameter-Meter-p/dh-umii-6pii.htm

Categories : Application Advice, Case Studies & Application Stories, Technical Tips

Using the Ultrameter II 6P in a Power Plant

Posted by 16 Aug, 2013

TweetFind out how a plant chemistry and O&M technician with 18 years experience, uses the Ultrameter II 6P to optimize blowdowns and control corrosion, scale, contamination & chemicals Deborah Walker, an operation and maintenance technician and plant chemistry technician in manufacturing and energy production has been managing water quality in industrial processes for more than […]

The Ultrameter II 6P

The Ultrameter II 6P

Find out how a plant chemistry and O&M technician with 18 years experience, uses the Ultrameter II 6P to optimize blowdowns and control corrosion, scale, contamination & chemicals

Deborah Walker, an operation and maintenance technician and plant chemistry technician in manufacturing and energy production has been managing water quality in industrial processes for more than 18 years. Through her extensive experience, she has come to rely on the Myron L Ultrameter II as a way to monitor control parameters that ensure the functioning of automatic controllers and chemical dosers that optimize cooling tower blowdown schedules; prevent scale, corrosion and microbiological fouling; screen influent and effluent for process parameter control and environmental compliance; as well as directly measuring parameters critical to a total quality assurance plan.

Deborah’s most recent use of the Ultrameter II 6P  was in a high output power plant implementing a Heat Recovery Steam Generator (HRSG), gas and steam turbines, all required heat exchangers, cooling towers, and chemical controllers that preserved the life of the equipment and structures in the water circulation loop while minimizing water and energy consumption. Deborah used the UMII as part of quality assurance for all water and steam quality. Make up water for this application was sourced from a massive municipal pipeline with wastewater being discharged into a nearby creek.

Much of the online controllers Deborah monitored featured an online sampling panel. Deborah used the Ultrameter II to draw solution from the panel to ensure the online meters that monitored cooling water throughout the system were functioning properly. Because the Ultrameter II 6P  measured all of the parameters critical to her operation, including conductivity, pH, ORP and temperature, she was able to efficiently analyze equipment functioning and chemical dosing quickly and accurately.

The Ultrameter II 6P also features data logging with memory for up to 100 readings, eliminating the need to perform record keeping tasks in the field. This means Deborah could monitor more areas of the plant in less time. Chemicals injected into the system included a cooling water dispersant that consisted of sodium bisulfate and sodium formaldehyde bisulfite. Sodium bisulfate effectively lowered the pH of the system and sodium formaldehyde bisulfite also served as an oxygen scavenger. (Removing oxygen from the system helps to prevent the formation of the hydroxide ion and hence the formation of rust, disrupting the processes of the corrosion cell. Tetrapotassium pyrophosphate is used for water stabilization and disrupts the corrosion process at the cathodic areas by combining with calcium or iron to form a complex film.) pH monitoring with the Ultrameter II 6P was required to ensure target levels as well as optimum chemical performance.

Deborah also used the Ultrameter II 6P as a quality check to maintain the HRSG. To do this, she tested the purity of the steam by measuring conductivity of steam at the sample panel for boiler chemistry control.

The steam that issued from the HRSG to the turbine had the potential to errode or deposit, which could affect energy efficiency, as well as damage equipment. Any deposits would add mass to the turbine, making it more difficult to turn with greater friction, requiring more energy for the mass with more energy lost as heat. Any increase in conductivity in the steam indicated that either something undesirable was in the water as it was coming in or that there was something wrong with the combustion chemistry—either the dirty water was carried over to the steam or the steam was eroding the boiler and picking up minerals from the metal components. If the steam was corrosive, preventative corrections could be made to stem any equipment damage. If other chemical contamination was evident, additional pretreatment and other chemical controls could be implemented.

Using the Ultrameter II 6P for steam quality control not only increased HRSG energy efficiency and equipment lifecycle, but also decreased its environmental footprint because some of the chemical contaminants that could form deposits could only be removed by other dangerous chemicals with extensive outage during maintenance. The operational target for specific conductivity blowdown identified by Deborah with the Ultrameter II was 1200-1400µS with a goal of 10 cycles of concentration.

Deborah also used the Ultrameter II as part of a disinfection program. Chlorine was used to mitigate biological fouling and corrosion. Chlorine injection occurred at 8 a.m. and 2 p.m. with blowdowns scheduled for once at night and once during the day. Deborah’s target residual level range for system disinfection was 0.2-0.6 ppm free chlorine. The bleach injection used in disinfection, however, not only interfered directly with pH control, but also with the effectiveness of other chemicals used to prevent scaling and corrosion.

Chlorine also had to be kept at a consistent reasonable level at all times to avoid shocking the system with massive doses, which could make the system erratic and difficult to balance. During a shock, biological growth could come loose as well, potentially clogging membranes or small pipes in the sample panel. Spot checking parameters such as pH, ORP and conductivity with the Ultrameter II was critical to ensuring consistent residual chlorine levels, pH, and scale and corrosion inhibitors between blowdowns.

The Ultrameter II 6Pwas used by Deborah to verify the accuracy of monitors that controlled demineralizer water used in other processes at the power plant. Three trains were employed to remove dissolved solids. The first vessel removed cations. The second vessel removed anions. The third was a mixed bed that removed both types. The Ultrameter II 6P  could be used to determine when the trains had become saturated and needed to be regenerated by measuring any increase in conductivity downstream from the beds. Acid injection was used to flush the demineralizer out, which was then rinsed. Deborah used the Ultrameter II to ensure that the brine wastewater that resulted was neutralized and documented its pH and conductivity before it was shipped away.

Deborah also had to mitigate the environmental impact of discharged cooling waters. She used the Ultrameter II 6P  to take measurements of pH and temperature of the water from a creek upstream of the plant to establish a baseline for compliance for the wastewater, so that she could get the water as close to the natural conditions of the creek as possible before discharge.

The chlorine injected to kill microbes and prevent fouling while the cooling water was being recirculated also had to be removed from the water before it entered the creek. This is because the chlorine could also kill desirable organisms important to the ecosystem of the creek, either by direct oxidation or accumulation to toxic levels in living tissues. If chlorine residual was above 0.2 ppm, the waste stream was diverted to sodium bisulfite skids. On the discharge side of the skids, Deborah used the Ultrameter II to test that sodium bisulfite was injected and effective at binding with and deactivating the chlorine by measuring the Oxidation Reduction Potential (ORP). ORP measured the total killing power of all sanitizers in solution by measuring the chemical activity, rather than any specific constituent. Deborah also checked the free chlorine level again specifically.

The sodium bisulfite skid itself also caused the pH of the water to vary slightly. So Deborah made a final check of the pH using the Ultrameter II. The pH was controlled to between 6.6 and 8.6 to optimize the efficacy of other chemicals in solution. The cooling tower would typically blow down within this range, but could be as high as the administrative limit, which was set at 8.7—still well within permit discharge limits, but only with special permission.

The outside blowdown line from the cooling tower dumped into a settling basin before it traveled out to the creek. Deborah used the Ultrameter II  6P to test conductivity, pH, ORP and free chlorine before the cooling water was discharged into the settling basin to ensure compliance with the established guidelines.

Part of effluent compliance also included a plan to monitor and control stormwater runoff from the plant. Deborah used the Ultrameter II 6P to monitor and report pH and conductivity following a major rain event.

Ranges for other operational limits include 80-130 mg/L (ppm) Ca, which usually runs at about 60 mg/L; 0-0.5 mg/L iron, which usually runs at about 0.30 mg/L; microorganism plate count of 0-104 cfu/mL, and suspended solids between 0-25 mg/L.

Deborah has also used the Ultrameter II 6P as part of a Quality Assurance plan for a prominent electric semiconductor manufacturer in which she used conductivity measurements to ensure semiconductor chip quality through proper rinsing.

Myron L Meters is the premier online internet retailer of the Myron L Ultrameter II 6P.  Find out more about the Ultrameter II 6P here:

https://www.myronlmeters.com/Myron-L-6P-Ultrameter-II-Multiparameter-Meter-p/dh-umii-6pii.htm

Categories : Application Advice, Case Studies & Application Stories, MyronLMeters.com Valued Customers, Technical Tips

The Ultrameter II 6P: MyronLMeters.com

Posted by 12 Jun, 2013

Tweet Myron l Meters Ultrameter II 6p from Myron L Meters

Myron l Meters Ultrameter II 6p from Myron L Meters
Categories : Product Updates

The Ultrameter II 4P: MyronLMeters.com

Posted by 12 Jun, 2013

Tweet

Categories : Product Updates

Water Quality Testing in RO Systems – MyronLMeters.com

Posted by 10 May, 2013

Tweet Water quality testing is vital to the design of an efficient, cost-effective RO system, and is one of the best ways to preserve system life and performance. Using an accurate Total Dissolved Solids (TDS) measurement to assess the system load prevents costly mistakes up front. The TDS measurement gives users the information they need […]

DH-UMIII-9PTK-2T

Water quality testing is vital to the design of an efficient, cost-effective RO system, and is one of the best ways to preserve system life and performance.

Using an accurate Total Dissolved Solids (TDS) measurement to assess the system load prevents costly mistakes up front. The TDS measurement gives users the information they need to determine whether or not pretreatment is required and the type of membrane/s to select. Ultrameter™ and ULTRAPEN PT1™ Series TDS instruments feature the unique ability to select from 3 industry standard solution models: 442 Natural Water™ NaCl; and KCl. Choosing the model that most closely matches the characteristics of source water yields measurements accurate enough to check and calibrate TDS monitor/controllers that can help alert to system failures, reducing downtime and increasing productivity. The same instruments provide a fast and accurate test for permeate TDS quality control. Measuring concentrate values and analyzing quality trends lets users accurately determine membrane usage according to the manufacturer’s specifications so they can budget consumption correctly. These daily measurements are invaluable in detecting problems with system performance where changes in the ionic concentration of post-filtration streams can indicate scaling or fouling. System maintenance is generally indicated if there is either a 10-15% drop in performance or permeate quality as measured by TDS.

Thin-film composite membranes degrade when exposed to chlorine. In systems where chlorine is used for microbiological control, the chlorine is usually removed by carbon adsorption or sodium bisulfite addition before membrane filtration. The presence of any chlorine in such systems will at best reduce the life of the membrane, thus, a target of 0 ppm free chlorine in the feedwater is desirable.

ORP gives the operator the total picture of all chemicals in solution that have oxidizing or reducing potential including chlorine, bromine, chloramines, chlorine dioxide, peracetic acid, iodine, ozone, etc. However, ORP can be used to monitor and control free chlorine in systems where chlorine is the only sanitizer used. ORP over +300 mV is generally considered undesirable for membranes. Check manufacturer’s specifications for tolerable ORP levels.

An inline ORP monitor/controller placed ahead of the RO unit to automatically monitor for trends and breakthroughs coupled with spot checks by a portable instrument will prevent equipment damage and failure. Myron L 720 Series II™ ORP monitor/controllers can be configured with bleed and feed switches as well as visible and audible alarms.

Ultrameter and ULTRAPEN portable handhelds are designed for fast field testing and are accurate enough to calibrate monitor/controllers. Our measurement methods are objective and have superior accuracy and convenience when compared to colorimetric methods where determination of equivalence points is subjective and can be skewed by colored or turbid solutions.

Monitoring pH of the source water will allow users to make adjustments that optimize the performance of antiscalants, corrosion inhibitors and anti-foulants. Using a 720 II Series Monitor/controller to maintain pH along with an Ultrameter Series or ULTRAPEN PT2™ handheld to spot check pH values will reduce consumption of costly chemicals and ensure their efficacy.

Most antiscalants used in chemical system maintenance specify a Langelier Saturation Index maximum value. Some chemical manufacturers and control systems develop their own proprietary methods for determining a saturation index based on solubility constants in a defined system. However, LSI is still used as the predominant scaling indicator because calcium carbonate is present in most water. Using a portable Ultrameter III 9PTKA™ provides a simple method for determining LSI to ensure the chemical matches the application.

The Ultrameter III 9PTKA computes LSI from independent titrations of alkalinity and hardness along with electrometric measurements of pH and temperature. Using the 9PTKA LSI calculator, alterations to the water chemistry can be determined to achieve the desired LSI. Usually, pH is the most practical adjustment. If above 7, acid additions are made to achieve the pH value in the target LSI. Injections are made well ahead of the RO unit to ensure proper mixing and avoid pH hotspots. A Myron L 720 Series II pH Monitor/controller will automatically detect and divert solution with pH outside the range of tolerance for the RO unit. ULTRAPEN PT2, TechPro II and Ultrameter Series instruments can be used to spot check and calibrate the monitor/controller as part of routine maintenance and to ensure uniform mixing.

Water hardness values indicate whether or not ion exchange beds are required in pretreatment. Checking hardness values directly after the softening process with the Ultrameter III 9PTKA ensures proper functioning and anticipates the regeneration schedule.

Alkalinity is not only important in its effect on the scaling tendency of solution, but on pH maintenance. Additions of lime are used to buffer pH during acid injection. Use a 9PTKA to measure alkalinity values for fast field analysis where other instrumentation is too cumbersome to be practical.

Though testing and monitoring pressure is a good way to evaluate system requirements and performance over time, measuring other water quality parameters can help pinpoint problems when troubleshooting. For example, if the pressure differential increases over the second stage, the most likely cause is scaling by insoluble salts. This means that any degradation in performance is likely due to the dissolved solids in the feed. Using a 9PTKA to evaluate LSI and calculate parameter adjustments is a simple way to troubleshoot a costly problem.

Myron L Meters saves you 10% on all Ultrameters and Ultrapens when you order online at MyronLMeters.com, where you can find the complete selection of Myron L meters, including the Ultrameter III 9PTKA.

Original story from International Filtration News V 32, no. 2

 

Categories : Application Advice, Case Studies & Application Stories, Technical Tips

Frequently Asked Questions – MyronLMeters.com

Posted by 28 Jan, 2013

TweetHow long will my Standard Solutions and Buffers last? The warranty on all standards and buffers is one year from the date it is manufactured (see the label on the bottle). If the standards and buffers become contaminated by the user pouring test samples back into the bottle or inserting the probe into the bottle […]

How long will my Standard Solutions and Buffers last?

The warranty on all standards and buffers is one year from the date it is manufactured (see the label on the bottle). If the standards and buffers become contaminated by the user pouring test samples back into the bottle or inserting the probe into the bottle the solution will not be accurate and should be discarded. The life of standards and buffers can exceed 1 year if the bottle is stored tightly capped and is not exposed to direct sunlight or freezing temperatures. If the solution becomes frozen, do not remove the cap – allow the standard or buffer solution to thaw completely and shake the bottle vigorously before opening.

How do I clean the conductivity cell cup on the handheld units?

With everyday sampling, the cell cup may build up a residue or film on the cell walls that may cause the readings to become erratic. Use a 50/50 mixture of a common household cleaner (i.e. Lime-A-Way, CLR, Tilex, etc) and DI water. Pour into conductivity cell cup and scrub with a q-tip. Be sure to get around all the electrodes and the thermistor probe. On the DS handheld unit, use an acid brush to scrub the cell cup. Let it set for about 10 minutes. Rinse the cell cup thoroughly with tap water, then a final rinse with DI water.

The display on my Ultrameter II 6P reads “Error 1″. What does that mean?

This is possibly caused by contamination to the circuit board. One or more of the traces on the PCB have been jumped/bridged and there is a contamination. Possible moisture, condensation, dirt, dried salts or other condensation inside is a potential cause for this display.

Where can I get an operations manual for my meter?

Go to MyronLMeters.com. Click on Manuals and Literature at the top of the page. Once on the Manuals and Literature page, you’ll find application bulletins, operations manuals, material safety data sheets, and product datasheets.  All are free, downloadable pdf files.

How do I pick the correct range module for my Monitor or Monitor/Controller?

Pick a range module that covers 2/3 of your operating range. If you pick a range module that is too broad, then your accuracy will suffer or it will not show a number on the display. For example, if your operating range is 100-150 microsiemens, a range module of 0-200 microsiemens (-115) would be a good choice. A range module of 0- 5,000 microsiemens (-123) would not be a good choice for this application

Got questions? Visit us at MyronLMeters.com and Ask An Expert.

 

 

 

 

Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

pH and pH Meters – MyronLMeters.com

Posted by 24 Sep, 2012

TweetWhat is pH? pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions […]

What is pH?

pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Measuring pH for aqueous solutions can be done with a glass electrode and a pH meter, or using indicators.

Measuring pH is important in water treatment, medicine, biology, chemistry, agriculture, forestry, food science, environmental science, oceanography, civil engineering, chemical engineering, and many other applications.

p[H] was first introduced by Danish chemist Søren Peder Lauritz Sørensen at the Carlsberg Laboratory in 1909 and revised to the modern pH in 1924 to accommodate definitions and measurements in terms of electrochemical cells.  According to the Carlsberg Foundation pH stands for “power of hydrogen”.

pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion activity, aH+, in a solution.

pH Meters

A pH meter is an electronic device used for measuring the pH (acidity or alkalinity) of a liquid (though special probes are sometimes used to measure the pH of semi-solid substances). A typical pH meter consists of a special measuring probe (a glass electrode) connected to an electronic meter that measures and displays the pH reading.

The probe

The pH probe measures pH as the activity of the hydrogen cations surrounding a thin-walled glass bulb at its tip. The probe produces a small voltage (about 0.06 volt per pH unit) that is measured and displayed as pH units by the meter. For more information about pH probe care or replacement, please consult your Myron L meter operations manual.

Calibration and use

*Please consult your Myron L meter operations manual before calibrating.

For very precise work the pH meter should be calibrated before each measurement. For normal use calibration should be performed at the beginning of each day. The reason for this is that the glass electrode does not give a reproducible e.m.f. over longer periods of time. Calibration should be performed with at least two standard buffer solutions that span the range of pH values to be measured. For general purposes buffers at pH 4 and pH 10 are acceptable. The pH meter has one control (calibrate) to set the meter reading equal to the value of the first standard buffer and a second control (slope) which is used to adjust the meter reading to the value of the second buffer. A third control allows the temperature to be set. Standard buffer solutions, which can be obtained from MyronLMeters.com here:

http://www.myronlmeters.com/pH-Buffer-Calibration-Solutions-s/82.htm

usually state how the buffer value changes with temperature. For more precise measurements, a three buffer solution calibration is preferred. As pH 7 is essentially, a “zero point” calibration (akin to zeroing a scale), calibrating at pH 7 first, calibrating at the pH closest to the point of interest ( e.g. either 4 or 10) second and checking the third point will provide a more linear accuracy to what is essentially a non-linear problem. Some meters will allow a three point calibration and that is the preferred scheme for the most accurate work, and is recommended by Myron L Meters. Higher quality meters will have a provision to account for temperature coefficient correction, and high-end pH probes have temperature probes built in. The calibration process correlates the voltage produced by the probe (approximately 0.06 volts per pH unit) with the pH scale. After each single measurement, the probe is rinsed with distilled water or deionized water to remove any traces of the solution being measured, blotted with a scientific wipe to absorb any remaining water which could dilute the sample and thus alter the reading, and then quickly immersed in another solution.

Storage conditions of the glass probes

When not in use, the glass probe tip must be kept wet at all times to avoid the pH sensing membrane dehydration and the subsequent dysfunction of the electrode. You can get your sensor storage solution here:

http://www.myronlmeters.com/pH-Storage-Solution-p/s-ssq.htm

A glass electrode alone (i.e., without combined reference electrode) is typically stored immersed in an acidic solution of around pH 3.0. In an emergency, acidified tap water can be used, but distilled or deionised water must never be used for longer-term probe storage as the relatively ionless water “sucks” ions out of the probe membrane through diffusion, which degrades it.

Combined electrodes (glass membrane + reference electrode) are better stored immersed in the bridge electrolyte (often KCl  3 M) to avoid the diffusion of the electrolyte (KCl) out of the liquid junction.

Cleaning and troubleshooting of the glass probes

Occasionally (about once a month), the probe may be cleaned using pH-electrode cleaning solution; generally a 0.1 M solution of hydrochloric acid (HCl) is used, having a pH of one.

In case of strong degradation of the glass membrane performance due to membrane poisoning, diluted hydrofluoric acid (HF < 2 %) can be used to quickly etch (< 1 minute) a thin damaged film of glass. Alternatively a dilute solution of ammonium fluoride (NH4F) can be used. To avoid unexpected problems, the best practice is however to always refer to the electrode manufacturer recommendations or to a classical textbook of analytical chemistry.

Types of pH meters

A pH meter for every industry

pH meters range from simple and inexpensive pen-like devices to complex and expensive laboratory instruments with computer interfaces and several inputs for indicator and temperature measurements to be entered to adjust for the slight variation in pH caused by temperature. Specialty meters and probes are available for use in special applications, harsh environments, etc. Myron L Meters offers a simple pen-style pH meter, analog handheld meters, digital handheld multiparameter meters, and inline monitor/controllers.

Myron L Ultrapen PT2 pH and Temperature Tester

 

 

 

 

 

 

 

 

https://www.myronlmeters.com/Ultrapen-PT2-Multiparameter-Meter-p/dh-up-pt2-ss.htm

ULTRAPEN PT2 pH and Temperature Pen

Accuracy of +/- 0.01 pH

Reliable Repeatable Results

Easy Calibration

Automatic Temperature Compensation

Measures Temperature

Durable, Fully Potted Circuitry

Waterproof

Comes with 2oz bottle of pH Storage Solution

 

 

Myron L AG-6 TDS and pH meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Analog-pH-Conductivity-Meter-p/ah-ds-ag6-fslash-ph.htm

 

Agri-Meter – Ag-6: 0-5 millimhos; 2-12 pH

Instant and accurate TDS tests

Electronic Internal Standard for easy field calibration

Fast Auto Temperature Compensation

Rugged design for years of trouble-free testing

Simple to use

 

Myron L Ultrameter II 6P multiparameter meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Ultrameter-II-6P-Multiparameter-Meter-p/dh-umii-6pii.htm

 

 

Multi-Parameter: Conductivity, TDS, Resistivity, pH, ORP, Temperature, Free Chlorine (FCE)

+/-1% Accuracy of Reading

Memory Storage: Save up to 100 samples w/ Date & Time stamp

Wireless Download Module Optional

Waterproof

 

Myron L 723II digital inline pH monitor/controller

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Inline-pH-Digital-Monitor-Controller-p/i-dmc-723ii.htm

 

The advanced “isolated” circuitry of the 720 Series II pH/ORP Monitor/ controllers guarantees accurate and reliable measurements — completely eliminating ground-loop and noise issues.

 

The unique sensor preamp allows for longer distances between the sensor and the Monitor/controller without the loss of accuracy or reliability.

 

All Myron L Monitor/controllers feature a highly refined and precise Temperature Compensation circuit. This feature perfectly matches the NERNST equation correcting the displayed reading to 25′C. The TC may be disabled to conform to USP requirements.

 

 

Categories : Product Updates, Science and Industry Updates