Pool Maintenance with the Myron L PoolPro

Posted by 4 Dec, 2014

TweetAnyone and everyone who is responsible for operating and maintaining a swimming pool or spa has to test, monitor, and control complex, interdependent chemical factors that affect the quality of water bathers are immersed in. Additionally, aquatic facilities operators must be familiar with all laws, regulations, and guidelines governing what these parameters should be. Why? […]

Anyone and everyone who is responsible for operating and maintaining a swimming pool or spa has to test, monitor, and control complex, interdependent chemical factors that affect the quality of water bathers are immersed in. Additionally, aquatic facilities operators must be familiar with all laws, regulations, and guidelines governing what these parameters should be.

Why? Because the worst breeding ground for any kind of microorganism is a warm (enough) stagnant pool of water. People plus stagnant water equals morbid illness. That’s why pools have to be circulated, filtered, and sanitized – with any number of chemicals or methods, but most frequently with chlorine compounds. However, adding chemicals that kill the bad microorganisms can also make the water uncomfortable, and in some cases unsafe, for swimmers. Additionally, if all the chemical factors of the water are not controlled, the very structures and equipment that hold the water and keep it clean are ruined.

So the pool professional must perform a delicate balancing act with all the factors that affect both the health and comfort of bathers and the equipment and structures that support this. Both water balance – or mineral saturation control – and sanitizer levels must constantly be maintained. This is achieved by measuring pertinent water quality factors and adding chemicals or water to keep the factors within acceptable parameters.

WATER BALANCE

Water is constantly changing. Anything and everything directly and indirectly affects the relationship of its chemical parameters to each other: sunlight, wind, rain, oil, dirt, cosmetics, other bodily wastes, and any chemicals you add to it. Balanced water not only keeps swimmers comfortable, but also protects the pool shell, plumbing, and all other related equipment from damage by etching or build-up and stains.

The pool professional is already well acquainted with pH, Total Alkalinity (TA), and Calcium Hardness (CH); along with Total Dissolved Solids (TDS) and Temperature, these are the factors that influence water balance. Water that is in balance is neither aggressive nor oversaturated.

Aggressive water lacks sufficient calcium to saturate the water, so it is hungry for more. It will eat anything it comes into contact with to fill its need, including the walls of your pool or spa or the equipment it touches. Over-saturated water cannot hold any more minerals, so dissolved minerals come out of solution and form scale on pool and equipment surfaces.

The pH of pool water is critical to the effectiveness of the sanitizer as well as the water balance. pH is determined by the concentration of Hydrogen ions in a specific volume of water. It is measured on a scale of 0-14, 0-7 being acidic and 7-14 being basic.

You must maintain the pH of the water at a level that assures the sanitizer works effectively and at the same time protects the pool shell and equipment from corrosion or scaling and the bathers from discomfort or irritation. If the pH is too high, the water is out of balance, and the sanitizer’s ability to work decreases. More and more sanitizer is then needed to maintain the proper level to kill off germs. Additionally, pH profoundly affects what and how much chemical must be added to control the balance. A pH of between *7.2 – 7.6 is desirable in most cases.

*As one of the most important pool water balance and sanitation factors, pH should be checked hourly in most commercial pools. Even if you have an automatic chemical monitor/controller on your system, you need to double-check its readings with an independent pH test. With saltwater pools, pH level goes up fast, so you need to check it more often. Tests are available that require reagents and subjective evaluation of color depth and hue to judge their pH. But different users interpret these tests differently, and results can vary wildly.

Myron L’s POOLPRO™ gives instant lab-accurate, precise, easy-to-use, objective pH measurements, invaluable in correctly determining what and how much chemical to add to maintain water balance and effective sanitizer residuals.

Total Alkalinity (TA) is the sum of all the alkaline minerals in the water, primarily in bicarbonate form in swimming pools, but also as sodium, calcium, magnesium, and potassium carbonates and hydroxides, and affects pH directly through buffering. The greater the Total Alkalinity, the more stable the pH. *In general, TA should be maintained at 80 – 120 parts per million (ppm) for concrete pools to keep the pH stable. Maintaining a low TA not only causes pH bounce, but also corrosion and staining of pool walls and eye irritation. Maintaining a high TA causes over-stabilization of the water, creating high acid demands, formation of bicarbonate scale, and may result in the formation of white carbonate particles (suspended solids), which clouds the water. Reducing TA requires huge amounts of effort. So the best solution to TA problems is prevention through close monitoring and controlling. Myron L’s Alkalinity Test Kit comes with sodium hydrogen sulphate tablets and a mixing/measuring vial to determine alkalinity in parts per million.

The other water balance parameter pool professionals are most familiar with is Calcium Hardness (CH). CH is the calcium content of the water and is measured in parts per million. Low CH combined with a low pH and low TA significantly increases corrosivity of water. As the water becomes more aggressive, the solubility of calcium carbonate also increases. This means that plaster and marcite pool finishes will deteriorate quickly because calcium carbonate is a major component of both plaster and marcite. Low CH also leads to corrosion of metal components in the pool plant, particularly in heat exchangers. Calcium carbonate usually provides a protective film on the surface of copper heat exchangers and heat sinks. This thin layer prevents much water-to-metal interaction but does not adversely affect the heating process. Without this protective layer caused by low CH, heat exchangers and associated parts can be destroyed prematurely. Strangely enough, as water temperature increases, solubility of calcium carbonate decreases. *The recommended range for most pools is 200 – 400 ppm. Calcium hardness should be tested at least monthly and has the least significant effect on the water balance when compared to pH and TA.

Total Dissolved Solids (TDS) is the sum of all solids dissolved in water. If all the water in a swimming pool was allowed to evaporate, TDS would be what was left on the bottom of the pool – like the white deposits left in a boiling pot after all the water has evaporated. Some of this dissolved material includes hardness, alkalinity, cyanuric acid, chlorides, bromides, and algaecides. TDS also includes bather wastes, such as perspiration, urine, and others.

TDS is often confused with Total Suspended Solids (TSS). But TDS has no bearing on the turbidity, or cloudiness, of the water, as all the solids are truly in solution. It is TSS, or undissolved, suspended solids, present in or that precipitate out of the water that make the water cloudy.

High TDS levels do affect chlorine efficiency, algae growth, and aggressive water, but only minimally. TDS levels have the greatest bearing on bather comfort and water taste – a critical concern for commercial pool operators. At levels of over 5,000ppm, people can taste it. At over 10,000ppm bather towels are scratchy and mineral salts accumulate around the pool and equipment. Still some seawater pools comfortably operate with TDS levels of 32,000ppm or more.

As methods of sanitization have changed, high TDS levels have become more and more of a problem. *The best course of action is to monitor and control TDS by measuring levels and periodically draining and replacing some of your mature water with new, lower TDS tap water. This is a better option than waiting until you must drain and refill your pool, which is not allowed in some areas where water conservation is required by law. However, you can also decrease TDS with desalinization equipment as long as you compensate with Calcium Hardness. (Do not adjust water balance by moving pH beyond 7.8.)

Regardless, you do need to measure and compensate for TDS to get the most precise saturation index and adjust your pH and Calcium Hardness levels accordingly. *It is generally recommended that you adjust for TDS levels by subtracting one tenth of a saturation index unit (.1) for every 1,000ppm TDS over 1,000 to keep your water properly balanced. When TDS levels exceed 5,000ppm, it is recommended that you subtract half of a tenth, or one twentieth of unit (.05) per 1,000ppm. And as the TDS approaches that of seawater, the effect is negligible.

Hot tubs and spas have a more significant problem with TDS levels than pools. Because the swimmer load is relatively higher, more chemicals are added for super-chlorination and sudsing along with a higher concentration of bather wastes. The increased electrical conductance that high TDS water promotes can also result in electrolysis or galvanic corrosion. Every hot water pool operator should consider a TDS analyzer as a standard piece of equipment.

A TDS analyzer is required to balance the water of any pool or spa in the most precise way. Myron L’s POOLPRO and POOLMETER™ immediately display TDS levels to correctly calculate your water’s saturation index and to ensure you take corrective action before TDS gets out of hand.

Temperature is the last and least significant factor in maintaining water balance. As temperature increases, the water balance tends to become more basic and scale producing. Calcium carbonate becomes less soluble, causing it to precipitate out of solution. As temperature drops, water becomes more corrosive.

In addition to helping determine water balance, temperature also affects bather comfort, evaporation, chlorination, and algae growth (warmer temperatures encourage growth). Myron L’s POOLPRO also precisely measures temperature to one tenth of a degree at the same time any other parameter is measured.

The formula for determining water balance is called the Langlier Index, or Saturation Index. It is determined by the following formula:

SI= (pH + TF + CF + AF ) – 12.1

Where TF is the temperature, CF is Calcium Hardness, and AF is Total Alkalinity adjusted for temperature. 12.1 is the Total Dissolved Solids constant. Consult appropriate conversion charts to obtain the correct values for each variable.

– An index between -0.5 and +0.5 is acceptable pool water.
– An index of more than +0.5 is scale-forming.
– An index below -0.5 is corrosive.

pH, Total Alkalinity, and Calcium Hardness are the big three contributors to water balance. *Pool water will often be balanced if these factors are kept within the recommended ranges.

SANITATION

The most immediate concern of anyone monitoring and maintaining a pool is the effectiveness of the sanitizer – the germ-killer. There are many types of sanitizers, the most common being chlorine in swimming pools and bromine in hot tubs and spas. The effectiveness of the sanitizer is directly related to the pH and, to a lesser degree, the other factors influencing water balance.

To have true chemical control, you need to monitor both the sanitizer residual and the pH and use that information to chemically treat the water – that’s where ORP comes in. ORP indicates the ability of oxidizers to burn up organic matter in the water, which means your water is clean and sanitary. There are colorimetric tests used to determine the amount of effective sanitizer for chlorine and other elements, but none is as objective and precise in determining the total killing power of all sanitizers as ORP.

ORP stands for Oxidation Reduction Potential (or REDOX) of the water and is measured in millivolts (mV). The higher the ORP, the greater the killing power of all sanitizers, not just free chlorine, in the water. ORP is the only practical method available to monitor sanitizer effectiveness. Thus, every true system of automatic chemical control depends on ORP to work.

The required ORP for disinfection will vary slightly between disinfecting systems and is also dependent on the basic water supply potential, which must be assessed and taken into account when the control system is initialized. *650mV to 700 – 750mV is generally considered appropriate.

Electronic controllers can be inaccurate and inconsistent when confronted with certain unique water qualities, so it is critical to perform manual testing with separate instrumentation. *For automatic control dosing, it is generally recommended that you manually test pH and ORP prior to opening and then once during the day to confirm automatic readings.

*Samples for confirming automatic control dosing should be taken from a sample tap strategically located on the return line as close as possible to the probes in accordance with the manufacturer’s instructions. If manual and automatic readings consistently move further apart or closer together, you should investigate the reason for the difference.

ORP readings can only be obtained with an electronic instrument. Myron L’s POOLPRO provides the fastest, most precise, easy-to-use method of obtaining ORP readings to check the effectiveness of the sanitizer in any pool or spa. This is the best way to determine how safe your water is at any given moment.

SALTWATER SANITATION

A relatively new development, saltwater pools use regular salt, sodium chloride, to form chlorine with an electrical current much in the same way liquid bleach is made. As chlorine – the sanitizer – is made from the salt in the water, it is critical to maintain the salt concentration at the appropriate levels to produce an adequate level of sanitizer. It is even more important to test water parameters frequently in these types of pools and a spa, as saltwater does not have the ability to respond adequately to shock loadings (super-chlorination treatments).

Most saltwater chlorinators require a *2,500 – 3,000ppm salt concentration in the water (though some may require as high as 5,000-7,000ppm). This can barely be tasted, but provides enough salt for the system to produce the chlorine needed to sanitize the water.

(It is important to have a good stabilizer level – *30 – 50 ppm – in the pool, or the sunlight will burn up the chlorine. Without it, the saltwater system may not be able to keep up with the demand regardless of salt concentration.)

Taste and salt shortages are of little concern to seawater systems that maintain an average of 32,000ppm. In these high-salt environments, you need to beware of corrosion to system components that can distort salt level and other parameter readings.

Additionally, incorrect salt concentration readings can occur in any saltwater system. The monitoring/controlling components can and do fail or become scaled — sometimes giving a false low salt reading. Thus, you must test manually for salt concentration with separate instrumentation before adding salt.

You must also test salt concentration manually with separate instrumentation to re-calibrate your system. This is critical to system functioning and production of required chlorine. Myron L’s POOLPRO conveniently tests for salt concentration at the press of the button as a check against automatic controller systems that may have disabled equipment or need to be re-calibrated.

As you can see, there are many factors affecting the comfort and sanitation of pool and spa water and the functioning of the equipment and structures that hold it, and no one instrument or method can be used to determine ALL of them, but Myron L’s POOLPRO gives you the most precise and comprehensive water testing instrument in one easy-to-use, handheld waterproof unit. Where precision counts, we’ve got you covered.

RECORD KEEPING – What to do with all those measurements …

Now that you have the data, you have to correctly transcribe, evaluate, and report it to the proper government agencies, or at least archive it as permanent record of proper compliance to whatever regulations apply to your pool or spa. (As if sanitizing and balancing the chemistry of the water wasn’t enough.)

*It is recommended (by the World Health Organization and other entities) that data handling be done objectively and that data be recorded in a common format and in the most accurate way. Also, data should be stored in more than one permanent location and made available for future analysis. *Most municipalities require commercial aquatic facilities to keep permanent records onsite and available for inspection at any time.

*Myron L’s POOLPRO makes it easy to comply with data record requirements. The POOLPRO is an objective means to test ORP, pH, TDS, temperature and the mineral/salt content of any pool or spa. You just rinse and fill the cell cup by submerging the waterproof unit and press the button of the parameter you wish to measure. You immediately get a standard, numerical digital readout – no interpretation required – eliminating all subjectivity. Up to 100 date-time-stamped readings can be stored in memory and then later transferred directly to a computer using our BluDock™ accessory package. You just set the unit on the Bludock and download the data to the computer. The user never touches or tampers with the data, reducing the potential for human error in transcription. The data can then be imported into any program necessary for record-keeping and analysis. *The Bludock is the fastest, easiest, best way to keep records that comply with governing standards.

Myron L Company’s POOLPRO is SIMPLY the best.

*Consult your governing bodies for specific testing, chemical concentrations, and all other guidelines and requirements. The ranges suggested here are meant as general examples.
Myron L Company assumes no responsibility for lack of compliance to specific regulations governing the testing and control of parameters in your pool and/or spa.

Categories : Application Advice, Case Studies & Application Stories, Product Updates, Science and Industry Updates, Technical Tips

MYRON L ULTRAPEN PTBT1: Conductivity/TDS/Salinity

Posted by 5 Aug, 2014

TweetComing soon!   Ultrapen PTBT1 and PTBT2 ULTRAPEN PTBT1 Conductivity/TDS/Salinity Pen Bluetooth enabled Pocket Testers for use with Apple iOS 6 and iOS 7 mobile devices. The ULTRAPEN PTBT1 is designed to be extremely accurate, fast and simple to use in diverse water quality applications. Advanced features include the ability to select from 3 different solution types […]

Coming soon!

 Ultrapen PTBT1 and PTBT2

Ultrapen PTBT1 and PTBT2

ULTRAPEN PTBT1 Conductivity/TDS/Salinity Pen

Bluetooth enabled Pocket Testers for use with Apple iOS 6 and iOS 7 mobile devices. The ULTRAPEN PTBT1 is designed to be extremely accurate, fast and simple to use in diverse water quality applications. Advanced features include the ability to select from 3 different solution types that model the characteristics of the most commonly encountered types of water; proprietary temperature compensation and TDS conversion algorithms; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. A true, one-handed instrument, the PTBT1 is easy to calibrate and easy to use. To take a measurement, you simply press a button then dip the pen in solution. Results display in seconds.

A free app takes advantage of Apple’s iOS graphical user interface to provide easy-to-read displays and a simple-to-use interface. The Bluetooth link means that there are no wires getting in the way when moving quickly between samples and that paired mobile devices can be held safely away from liquids.

Advanced features include: automatic temperature compensation; stable microprocessor-based circuitry; user-intuitive design and a rugged, waterproof housing.
The Ultrapen PTBT1 measures conductivity, total dissolved solids, salinity and temperature with three, selectable solution modes that model commonly encountered water types. The Ultrapen PTBT2 measures pH and temperature with one-, two- and three-point calibration options.
With the Ultrapen OS app, each Ultrapen PTBTx can be given a unique name stored in the Ultrapen’s memory so it is easily identifiable no matter what mobile device is used. Measurement locations can be programmed as GPS locations that are automatically selected when the user is close to a specific measurement local, or non-GPS locations, which are ideal for applications where the sample sites are too close together for the GPS to discriminate.
Through the app, items such as Ultrapen settings, sample temperatures, Ultrapen name and measurement locations can be saved to the mobile device’s memory. Records can be exported via the mobile device’s email function as either .csv, .xls, .xlsx formatted files or using a proprietary, encrypted format. Stored measurements can be sorted or filtered and then emailed or deleted without affecting other records stored in the memory.
The Ultrapen PTBT3 with ORP and temperature measurement, Ultrapen PTBT4 with free chlorine equivalent and temperature measurement, and an Android-compatible app are all coming soon.

ULTRAPEN – PTBT1
Another significant advantage to the PTBT1 is there are no bothersome wires connecting your mobile device to the sensors. Not only is it less hassle to move quickly from sample to sample, but the paired mobile device can be held safely away from the liquid samples being measured.


Using PTBT1 mobile app’s GUI:

• Each PTBT1 can be given a unique, user programmable, 14-character name that is stored in the microprocessor onboard the PTBT1 so that it is easily identifiable no matter what mobile device it is used with.

• Locations can be programmed into the application, either as GPS related locations that are automatically selected whenever the user is close to a specific measurement local, but also as non-GPS related locations. This non-GPS location feature is ideal for applications, such as laboratory environments, where the user might want to distinguish between sample sites that are too close to each other for the GPS to discriminate.

• Each measurement can be saved to the mobile device’s memory. Saved records include measurement data, sensor settings, the temperature, the pen name, and the location.

• Records can be exported via your mobile device’s email function as either .csv, MS Excel .xls or .xlsx formatted files or using Myron L’s .mlc, proprietary, secure and encrypted format.

• Stored measurements can be easily sorted and/or filtered, and emailed separately or deleted without affecting other records stored in the device’s memory.

The PTBT1 combine highly accurate measurement capabilities with the most up to date GUI interface and computing power to provide a powerful tool for both field and laboratory applications.

—————

The app’s GUI allows the user to:

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Easily connect to any active ULTRAPEN PTBTx pocket tester by one-touch selection from a list of available testers. Connection screen ONLY shows PTBTx pocket testers and ignores other Bluetooth devices.
Download a 14 character name into each ULTRAPEN PTBTx so that it is easily identifiable no matter what mobile device it is used with.
Program locations either as GPS related locations (automatically selected whenever the user is close to a specific measurement local), but also as non-GPS related locations (ideal for applications where sample sites are too close to each other for the GPS to discriminate).
Store Measurement Data and Calibration History that include:
- Measurement Value.
- UltraPen ID / Name.
- Location (programmable as both GPS and Non-GPS related locations)
Data records are:
- Sortable
- Exportable in .xls; .xlsx, .csv format as well as an encrypted, secure Myron L Company proprietary format.
- Can be filtered so that subsets of records can be deleted or exported without affecting other records stored in the device’s memory.
ULTRAPEN Features
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Advanced features include automatic temperature compensation; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. The PTBTx Pocket Testers are easy to calibrate and easy to use.
WORKS WITH
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
PTBT1 – measures Conductivity, Total Dissolved Solids (TDS), Salinity, and Temperature, with the ability to select from three different solution types that model the characteristics of the most commonly encountered types of water.
PTBT2 – Measures pH and Temperature. Includes a sample and hold mode as well as a live measurements mode. Can be calibrated using 1, 2, and 3 point calibration options.
Future ULTRAPEN PTBTx pocket testers will include measurement of ORP, Free Chlorine and Dissolved Oxygen.
——–
Compatibility: Requires iOS 6.1 or later. Compatible with iPhone, iPad, and iPod touch. This app is optimized for iPhone 5.
Categories : Product Updates

Expert Manages Storm Water Discharge in Active Construction Sites With Ultrameter II 6P: MyronLMeters.com

Posted by 7 Jul, 2014

Tweet Mike Alberson, an expert in storm water pollution prevention, uses the Myron L Ultrameter II 6P to meet new and existing state and federal requirements for storm water monitoring. He checks for the presence of pollutants by testing the levels of total dissolved solids (TDS) and conductivity. He also tests storm water pH levels […]

tumblr_mrw572B3Q81qgr3lpo4_250

Mike Alberson, an expert in storm water pollution prevention, uses the Myron L Ultrameter II 6P to meet new and existing state and federal requirements for storm water monitoring. He checks for the presence of pollutants by testing the levels of total dissolved solids (TDS) and conductivity. He also tests storm water pH levels in accordance with NPDES guidelines implemented in California in 2010 that mandate pH testing for all Risk Level 2 and 3 sites.

Though TDS and conductivity do not indicate the presence of any specific contaminant, monitoring these parameters is a good way to determine an increase in the concentration of dissolved chemical constituents generally. High conductivity or TDS levels are a red flag to Alberson to investigate potential sources of pollution.

Chemicals used in landscaping, such as herbicides, pesticides and fertilizers, as well as materials such as cement, can all potentially dissolve into storm water runoff. Additionally, acidic or basic pollutants impact the quality of water by altering the pH of the runoff. Monitoring is required because altering the pH alters the types and amounts of all chemical constituents in runoff and, thereby, its toxicity. Changes in pH also impact the ecosystem directly when they exceed the narrow range required by biota to live in the receiving waters. The new California NPDES requirements have set a pH range limit of 6.5 to 8.5 pH Units

The State Water Quality Board’s overall goal in implementing increased monitoring and reporting requirements is to evaluate the effectiveness of Best Management Practices (BMPs) on effluent pollution and the impact that construction activities have on receiving waters. Developers and inspectors like Alberson are continually challenged with preventing potential pollutants from leaving the project sites, and when that happens, they need to remediate any adverse affects on the environment.

As a prerequisite to construction, the Developer of Plan must generate and gain approval of BMPs and Storm Water Pollution Prevention Plans (SWPPPs) which take into account the nature of the project’s building schedule, phasing of the project, building materials, the projected rainfall, the percentage of impervious cover on the project and the impact that potential storm water runoff could have on receiving waters.  The plans must also address the required monitoring and critical indicators of specific pollutants projected to discharge from the project site.

The site storm water inspector has to ensure that the necessary BMPs are implemented throughout the length of the project, as defined by the project SWPPP plan, which addresses project-specific site conditions and risk level determinations.  Alberson uses the meter frequently on Barnhart Balfour Beatty projects as most fall into a category of Risk Level 2, which now requires pH monitoring along during a rain event of 0.5 in. or more.

New California requirements have required all SWPPP developers and inspectors to be certified by the state since Sept. 2, 2011 via a special course given by designated State Trainers of Record (TOR). Alberson is designated as a TOR and offers California’s new Qualified SWPPP Practitioner and Qualified SWPPP Developers courses.

As a trainer, Alberson passes on knowledge gained from his own experience. Through the years, he has seen inspectors send water samples off to laboratories for analysis, the results of which would not be known for up to two weeks. In addition, the pH of these samples would change in the time it took to get the samples to the labs for analysis. Alberson now trains developers and inspectors to use the Myron L Ultrameter II to immediately measure pH, thereby ensuring storm water runoff on project sites is precisely monitored for potential pollutants in real time.

In his own work as an inspector, Alberson has used the Myron L Ultrameter II to respond to potential pollution issues as they arise. For example, at Barnhart Balfour Beatty’s Otay Ranch Village #6 Elementary School project in Otay Mesa, Calif., he developed a remediation solution that prevented environmental contamination from high pH runoff resulting from a required lime treatment of the campus soil. By performing onsite testing following a rain event, Alberson was able to determine the potential runoff had a pH level of 12.5.  He decided to immediately utilize a retention pond with carbon dioxide percolation control techniques. His remediation tactic worked using the meter to continuously monitor the pH until it was at a level acceptable for release into the receiving waters.

Categories : Case Studies & Application Stories

Water Quality Parameters: MyronLMeters.com

Posted by 15 Apr, 2014

TweetWater Quality Parameters Measuring Key Water Quality Parameters The right meter is essential for measuring any of several key water quality parameters: Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be […]

Water Quality Parameters

Measuring Key Water Quality Parameters

The right meter is essential for measuring any of several key water quality parameters:

Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed in microsiemens per centimeter (µS/cm) at 25º Celsius. Myron L Meters carries a complete line of conductivity meters, including the Ultrameter II 4P.

Resistivity is the inverse of conductivity. Electrical conductivity is a measure of water’s resistance to an electric current. Water itself has a weak electrical conductivity. Electric current is transported in water by dissolved ions, making conductivity measurement a quick and reliable way to monitor the total amount of ionic contaminants in water. Myron L Meters carries a complete line of resistivity meters, including inline monitor/controllers like the 753II Resistivity Digital Monitor/Controller. Read more about Measuring Key Water Quality Parameters

The Ultrameter III 9P is the most comprehensive water meter on the market, measuring 9 parameters with a single instrument: Conductivity, Resistivity, TDS, Alkalinity, Hardness, Langelier Saturation Index,
ORP/Free Chlorine, pH, Temperature. Three parameters – LSI, hardness, and alkalinity require titration. Find out more about the Ultrameter III 9P

. Facebook Facebook Twitter Twitter Website Website email Email Google Plus Google Plus Pinterest Pinterest YouTube YouTube Tumblr Tumblr Watch the Myron L Meters – Ultrameter III 9P Titration Kit Overview Partners in Success
Would you like to become a Myron L Meters featured partner?  Our upcoming program will allow our customers to be featured on our website, offer them special discounts, custom branded training videos, and more.  Interested? Click here to join our Partners in Success program. Copyright © , All rights reserved.Our mailing address is:

 

Water Quality Parameters: MyronLMeters.com was originally published on Myron L Meters Blog

Categories : Uncategorized

Measuring Key Water Quality Parameters: MyronLMeters.com

Posted by 12 Apr, 2014

TweetThe right meter is essential for measuring any of several key water quality parameters:Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed […]

The right meter is essential for measuring any of several key water quality parameters:

Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed in microsiemens per centimeter (µS/cm) at 25º Celsius. Myron L Meters carries a complete line of conductivity meters, including the Ultrameter II 4P.

Resistivity is the inverse of conductivity. Electrical conductivity is a measure of water’s resistance to an electric current. Water itself has a weak electrical conductivity. Electric current is transported in water by dissolved ions, making conductivity measurement a quick and reliable way to monitor the total amount of ionic contaminants in water. Myron L Meters carries a complete line of resistivity meters, including inline monitor/controllers like the 753II Resistivity Digital Monitor/Controller.

Total Dissolved Solids (TDS) is also a measurement of the amount of dissolved minerals in the water. In this instance they would be called solids in solution. The quantity of dissolved solids in the solution is directly proportional to the conductivity. In this case, conductivity is the measurement but it is used to estimate TDS. It is measured with a conductivity meter but is reported as TDS in parts per million (ppm), via a complex algorithm. Myron L Meters carries a complete line of TDS meters, including the Ultrapen PT1.

pH is a measure of the concentration of hydrogen ions in the water, indicating the acidity or alkalinity of the water. On the pH scale of 0-14, a reading of 7 is considered to be neutral. Readings below 7 indicate acidic conditions, while readings above 7 indicate the water is alkaline or basic. Naturally occurring fresh waters have a pH range between 6 and 8. Myron L Meters carries a complete line of pH meters, including the Ultrapen PT2

Temperature is expressed in degrees Celsius (C) or Fahrenheit (F). Most digital handheld Myron L Meters include a temperature function.



Oxidation reduction potential (ORP)can correlate millivolt readings to the sanitization strength of the water. Microbes can cause corrosion, fouling, and disease, and oxidizing biocides are usually used to keep microbial levels under control. ORP is expressed in millivolts (mV). Myron L Meters carries a complete line of ORP meters, including the Ultrapen PT3

Free Chlorine refers to both hypochlorous acid (HOCl) and the hypochlorite (OCl–) ion or bleach, and is commonly added to water systems for disinfection. Free chlorine is typically measured in drinking water disinfection systems to find whether the water system contains enough disinfectant.  Myron L Meters Ultrameter II 6PFCe and Ultrapen PT4 can both be used to measure free chlorine.

Salinity is simply a measure of the amount of salts dissolved in water, a measurement useful to pool service technicians and others.  You can measure salinity with a Myron L Pool Pro PS6.

Alkalinity is a measure of the capacity of water or any solution to neutralize or “buffer” acids. This measure of acid-neutralizing capacity is important in figuring out how “buffered” the water is against sudden changes in pH. Alkalinity is a titration function of the Ultrameter III 9PTKA.

Hardness is caused by compounds of calcium and magnesium, and by a variety of other metals.  As water moves through soil and rock, it dissolves very small amounts of minerals and holds them in solution. Calcium and magnesium dissolved in water are the two most common minerals that make water “hard.” Hardness is a titration function of the Ultrameter III 9PTKA.

LSI or Langelier Saturation Index helps you determine the scaling potential of water. LSI is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. LSI is a titration function of the Ultrameter III 9PTKA.

MyronLMeters.com is the premier internet retailer of accurate, reliable Myron L meters.  Save 10% when you order Myron L meters online at MyronLMeters.com. You’ll find reliable instruments for every water quality parameter mentioned above.



 

 

 

Categories : Uncategorized

Ultrapen PT1 Conductivity, TDS and Salinity Calibration: Myron L Meters

Posted by 3 Apr, 2014

TweetThe Ultrapen PT1 is designed to be very reliable and requires only infrequent calibration. The factory recommends calibrating each measurement mode you use once monthly. However, you should check the calibration whenever measurements are not as expected. The PT1 is programmed for 2 calibration options: Wet Calibration or Factory Calibration. Wet calibration is most accurate. […]

The Ultrapen PT1 is designed to be very reliable and requires only infrequent calibration. The factory recommends calibrating each measurement mode you use once monthly. However, you should check the calibration whenever measurements are not as expected. The PT1 is programmed for 2 calibration options: Wet Calibration or Factory Calibration. Wet calibration is most accurate. But if a high quality standard KCl-1800 µS or 442-3000 ppm solution is not available, the PT1 can be returned to factory settings.

A. Wet Calibration
Use calibration solution specified for measurement mode: Use KCL- 1800 for Cond KCl; Use 442-3000 for tdS 442, SALt 442, tdS NaCl, and SALt NaCl. See Specifications table for 442 solution ppm NaCl equivalent value. Calibrating TDS simultaneously calibrates SALT for the same value and vice versa.
1. Pour calibration solution into a clean container.
2. Rinse the pen 3 times by submerging the cell in fresh calibration solution and swirling it around.
3. Remove pen from solution, then fill the container one more time.
4. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode. Ensure the PT1 is in the correct solution mode.
5. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “CAL” displays.
6. Grasp the pen by its case with your fingers positioned between the
display and the pen cap to avoid sample contamination.
7. While the LED flashes rapidly, dip the pen in calibration solution so that the cell is completely submerged. If you do not submerge the cell in solution before the fl slows, allow the pen to power off and start over.
8. While the LED flashes slowly, swirl the pen around to remove bubbles, keeping the cell submerged. Keep pen at least 1 inch (2½ cm) away from sides/bottom of container.
9. When the LED light stays on solid, remove the pen from the solution. “CAL SAVED” will display indicating a successful calibration.
Note: If an incorrect solution is used or the measurement is NOT within calibration limits for any other reason, “Error” displays alternately with “CLEAn CEL/CHEC SOL”. Check to make sure you are using the correct calibration solution. If the solution is correct, clean the cell by submerging the cell in a 1:1 solution of Lime-A-Way® and water for 5 minutes. Rinse the cell and start over.
10. Small bubbles trapped in the cell can give a false calibration. Measure the calibration solution again to verify correct calibration. If the reading is not within ±1% of the calibration solution value, repeat calibration.

B. Factory Calibration
If you do not have the proper calibration solution or wish to restore the pen to its original factory settings for any other reason, use the FAC CAL function to calibrate the PT1.
1. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode.
2. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “FAC CAL” displays.
3. While the display scrolls through “PUSHnHLD” and “FAC CAL”, push and hold the push button until the display scrolls through “SAVEd” and “FAC CAL”, indicating the pen has been reset to its factory calibration.
4. Allow the pen to time out to turn power off.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT1 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Product Updates

Ultrapen PT1 Conductivity, TDS and Salinity Pen Measurement: MyronLMeters.com

Posted by 3 Apr, 2014

TweetI. solution selection The PT1 allows you to select from several preprogrammed measurement modes. The following table lists measurement modes with their corresponding parameters; temperature compensation and TDS conversion solution models; and units of measure. Mode Parameter solution Model units Cond KCl Conductivity potassium chloride microsiemens (µS) tds 442 Total Dissolved Solids (TDS) 442™ Myron L […]

I. solution selection

The PT1 allows you to select from several preprogrammed measurement modes. The following table lists measurement modes with their corresponding parameters; temperature compensation and TDS conversion solution models; and units of measure.

Mode Parameter solution Model units
Cond KCl Conductivity potassium chloride microsiemens (µS)
tds 442 Total Dissolved Solids (TDS) 442™ Myron L NaturalWater Standard parts per million (ppm)
tds NaCl TDS sodium chloride ppm
salt 442 Salinity 442™ Myron L NaturalWater Standard parts per thousand (ppt)
salt NaCl Salinity sodium chloride ppt

 

esc This is the escape function. Selecting escape exits solution selection without saving changes and turns the PT1 off.

 

To select a measurement mode:
1. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode. If the measurement parameter and solution type displayed are correct, proceed to Temperature Unit Selection.

If not, proceed to step 2.

2. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “SOL SEL” displays.

3. While the display scrolls through “PUSHnHLD” and “SOL SEL”, push and hold the push button. The display will scroll through “Cond KCl”, “tdS 442”, “tdS NaCl”, “SALt 442”, “SALt NaCl” and “ESC”. Release when the desired measurement mode displays.

4. “SAVED” displays indicating the measurement mode is saved in memory. Allow the pen to time out to turn power off.

II. Temperature Unit Selection

The PT1 allows you to select the type of units used for temperature measurements. The following table lists preference options with their corresponding units.

Mode Unit Preference

C Degrees Celsius

F Degrees Fahrenheit

esc This is the escape function. Selecting escape exits temperature unit selection without saving changes and turns the PT1 off.

To set the preference:
1. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode.
2. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “ºCºF TEMP” displays.
3. While the display scrolls through “PUSHnHLD” and “ºCºF TEMP”, push and hold the push button. The display will scroll through “C”, “F” and “ESC”. Release when the desired unit option displays.
4. “SAVED” displays indicating the unit preference is saved in memory.
Allow the pen to time out to turn power off.

III. Normal Operation

Before you take a reading, make sure the pen is clean, calibrated and in the appropriate measurement mode. The sample solution must also be within the specified measurement range. Keep all foreign material away from the sample to avoid contamination.

Note: If you cannot dip the pen in the sample solution, pour the sample into a clean container. If you don’t have a sample container and need to test a vertical stream of solution, use the scoop.

The following table explains what the LED Indicator Light signals mean and gives the duration of each signal.

LED Indicator Light Signal Meaning duration

Rapid Flashing Dip pen in solution 6 sec

Slow Flashing Measurement in process 10-20 sec

Solid Light Note measurement value 6 sec

CAUTION: To measure solution at the extremes of the specified temperature range, allow the pen to equilibrate by submerging the cell in the sample solution for 1 minute prior to taking a measurement.

1. Rinse the pen 3 times by submerging the cell in fresh sample solution and swirling it around.

2. Remove pen from solution, then press and release the push button. Firmware version will be displayed, then current measurement mode.

3. Grasp the pen by its case with your fingers positioned between the display and the pen cap to avoid sample contamination.

4. While the LED flashes rapidly, dip the pen in fresh sample solution so that the cell is completely submerged. If you do not submerge the cell in solution before the flashing slows, allow the pen to power off and retake the reading.

5. While the LED flashes slowly, swirl the pen around to remove bubbles, keeping the cell submerged. Keep the pen at least 1 inch (2½ cm) away from sides/bottom of container, if applicable.

6. When the LED turns on solid, remove the pen from solution. The display will alternate between the measurement and temperature readings. Note the readings for your records.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT1 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Product Updates

Ultrapen PT1 Conductivity, TDS, Salinity Pen Features: MyronLMeters.com

Posted by 3 Apr, 2014

TweetThe ULTRAPEN™ PT1 Conductivity/ TDS/Salinity Pen is designed to be extremely accurate, fast and simple to use in diverse water quality applications. Advanced features include the ability to select from 3 different solution types that model the characteristics of the most commonly encountered types of water; proprietary temperature compensation and TDS conversion algorithms; highly stable […]

The ULTRAPEN™ PT1 Conductivity/ TDS/Salinity Pen is designed to be extremely accurate, fast and simple to use in diverse water quality applications. Advanced features include the ability to select from 3 different solution types that model the characteristics of the most commonly encountered types of water; proprietary temperature compensation and TDS conversion algorithms; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. A true one-handed instrument, the PT1 is easy to calibrate and easy to use. To take a measurement, you simply press a button then dip the pen in solution. Results display in seconds.

Features
1. Push Button — turns instrument on; selects mode and unit preferences.
2. Pen Cap — provides access to battery for replacement.
3. Clip — holds pen to shirt pocket for secure storage.
4. Battery Indicator — indicates charge left in battery.
5. display — displays measurements, mode options and battery indicator.
6. LED Indicator Light — indicates when to dip instrument in solution, when measurement is in progress, and when to remove instrument from solution.
7. electrodes — measure electric current of solution.
8. Cell — contains flux field in defined area for accurate current
measurement.
9. scoop — contains sample solution for measurement when sampling from a vertical stream. To use, slide the open end of the scoop over the bottom of the pen until the neck of the scoop is flush with the top of the cell. Hold pen with scoop end under stream. Rinse and fill with sample solution 3 times. Fill with solution again, then take measurement. We recommend you recalibrate the pen using the scoop to retain accuracy of ±1%.

Technical Specs

Measurement Range: 1 – 9999 µS or ppm (0.0010 – 9.999 ppt salinity)
Accuracy (After Wet Calibration): ± 1% of reading
Repeatability: < 1000 µS or ppm ± 1 Count
≥ 1000 µS or ppm ± 0.3% of reading
Resolution: Conductivity and TDS:
0.1 for 1.0 – 99.9 µS or ppm
1 for 100 – 9999 µS or ppm
Salinity: 0.0001 for 0.0010 – 0.0999 ppt
0.001 for 0.100 – 9.999 ppt
Temperature: 0.1 ºC or ºF
Time to Reading Stabilization: 10 – 20 seconds
Active Mode Power Consumption: 30 – 100 mA
Sleep Mode Power Consumption: 2 µA
Temperature Measurement Range: 0 – 71° C or 32 – 160° F
Temperature Accuracy Displayed: ± 0.1 ºC or ± 0.1 ºF
Temperature Compensation Method: Automatic to 25ºC
Physical Dimensions: 17.15 cm L x 1.59 cm D or 6.75 in. L x .625 in. D
Weight: 55 g or 1.94 oz.
Case Material: Anodized Aluminum with Protective Coating
Battery Type: N type, Alkaline
Battery Voltage: 1.5 V
Calibration Solution Point: 1800 µS KCl; 3000 ppm 442™ (2027 ppm NaCl)
Operating/Storage Temperature: 0 – 55ºC or 32 – 131ºF
Water Resistance: IP67 and NEMA 6

Electrostatic discharge to case of instrument may cause PT1 to spontaneously power on. In this case, the PT1 will power off after several seconds.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT1 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Product Updates

TDS Calibration on the Ultrameter II 6PIIFCe: MyronLMeters.com

Posted by 23 Mar, 2014

Tweet  *Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter. a. Fill and rinse the conductivity cell three times with a 442 standard solution. In this example, we’re using 442-3000. b. Refill conductivity cell with same standard solution you rinsed with. c. Press           then press   […]

 

*Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter.

a. Fill and rinse the conductivity cell three times with a 442 standard solution. In this example, we’re using 442-3000.

b. Refill conductivity cell with same standard solution you rinsed with.

c. Press

TDS

 

 

 

 

 

then press

 

.CAL key

 

 

 

 

The “CAL” icon will appear in the top center of the display. In this example, the reading shows 2988.

d. Press

Up

 

 

 

 

 

or

Down

 

 

 

 

 

to step the displayed value toward the standard’s value.

In this example, we’re pressing

 

Up

 

 

 

 

 

to go down from 2988 to 3000. You can also hold a key down to scroll rapidly.

e. Press

 

CAL key

 

 

 

 

 

once to confirm the new value and end the calibration.

You can find technical advice and videos, the calibration solutions you need, and reliable Myron L meters
at MyronLMeters.com
 
 

 

Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Ultrameter II Calibrate TDS on the 6PII

Posted by 22 Mar, 2014

TweetUltrameter II 6PII how to calibrate TDS, total dissolved solids. Learn how to test water samples, and calibration for the Ultrameter II.


Ultrameter II 6PII how to calibrate TDS, total dissolved solids. Learn how to test water samples, and calibration for the Ultrameter II.

Categories : Videos