Reverse Osmosis: MyronLMeters.com

Posted by 7 Apr, 2014

Tweet Reverse Osmosis   RO Meter – RO-1: 0-1250 ppm with color band RO Meters The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids […]



Reverse Osmosis



 

RO Meter – RO-1: 0-1250 ppm with color band
RO Meters
The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids (ppm/TDS) of any drinking water.
With a single ‘before and after’ test, this handy device effectively demonstrates how your RO or distillation system eliminates harmful dissolved solids. It will also service test systems, including membrane evaluation programs.Save $25.00 on the Ro-1 this month with coupon code: ROSave25

 

Ultrameter II – 6PIIConductivity, TDS, Salinity, pH, ORP, Temp Pens

Reverse osmosis biofouling

Introduction
Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by a biofouling problem –a problem related to biological material development which forms a sticky layer on the membrane surface (Flemming, 1997; Baker and Dudley, 1998).
Continuous biofouling problems in RO lead to higher energy input requirement as an effect of increased biofilm resistance (Rf) and biofilm enhanced osmotic pressure (BEOP), lower quality of product water due to concentration polarization (CP) – increased concentration due to solutes accumulation on the membrane surface, (Herzberg and Elimelech, 2007), and thus significant increase in both operating and maintenance costs.
Recent studies and objectives
Recent studies show the importance of the operating conditions (e.g. flux and cross flow velocities) in RO biofouling. The presence of feed channel spacers has also been getting more attention as it may have adverse effects. A previous study (Chong et al., 2008) without feed channel spacers showed that RO biofouling was a flux driven process where higher flux increased fouling rate.

READ MORE

 

Facebook
Facebook
Twitter
Twitter
Website
Website
YouTube
YouTube
Email
Email
Pinterest
Pinterest
Google Plus
Google Plus
Tumblr
Tumblr
LinkedIn
LinkedIn
 

ULTRAPEN Set – PT1, PT2, & PT3


Copyright © , All rights reserved.

Our mailing address is:

 

Categories : Uncategorized

Reverse Osmosis: MyronLMeters.com

Posted by 7 Apr, 2014

Tweet  Reverse Osmosis   RO Meter – RO-1: 0-1250 ppm with color band RO Meters The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids […]

 

Reverse Osmosis


 

RO Meter – RO-1: 0-1250 ppm with color band

RO Meters
The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids (ppm/TDS) of any drinking water.
With a single ‘before and after’ test, this handy device effectively demonstrates how your RO or distillation system eliminates harmful dissolved solids. It will also service test systems, including membrane evaluation programs.Save $25.00 on the Ro-1 this month with coupon code: ROSave25

 

Ultrameter II – 6PIIConductivity, TDS, Salinity, pH, ORP, Temp Pens

Reverse osmosis biofouling

Introduction
Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by a biofouling problem –a problem related to biological material development which forms a sticky layer on the membrane surface (Flemming, 1997; Baker and Dudley, 1998).
Continuous biofouling problems in RO lead to higher energy input requirement as an effect of increased biofilm resistance (Rf) and biofilm enhanced osmotic pressure (BEOP), lower quality of product water due to concentration polarization (CP) – increased concentration due to solutes accumulation on the membrane surface, (Herzberg and Elimelech, 2007), and thus significant increase in both operating and maintenance costs.

Recent studies and objectives
Recent studies show the importance of the operating conditions (e.g. flux and cross flow velocities) in RO biofouling. The presence of feed channel spacers has also been getting more attention as it may have adverse effects. A previous study (Chong et al., 2008) without feed channel spacers showed that RO biofouling was a flux driven process where higher flux increased fouling rate.

READ MORE

 

Facebook
Facebook
Twitter
Twitter
Website
Website
YouTube
YouTube
Email
Email
Pinterest
Pinterest
Google Plus
Google Plus
Tumblr
Tumblr
LinkedIn
LinkedIn
 

ULTRAPEN Set – PT1, PT2, & PT3

Copyright © , All rights reserved.

Our mailing address is:

 

Categories : Application Advice, Case Studies & Application Stories, Science and Industry Updates, Technical Tips

Reverse Osmosis and Removal of Minerals from Drinking Water: Myron L Meters

Posted by 17 Jun, 2013

TweetMyron L Meters provides introductory as well as professional level material on water quality and water treatment. Did you know that Myron L Meters carries a meter specifically for testing RO systems (see below)? Water purification systems have purified brackish water and sea water for the military, businesses and farms in many different locations on […]

Myron L Meters provides introductory as well as professional level material on water quality and water treatment. Did you know that Myron L Meters carries a meter specifically for testing RO systems (see below)?

Water purification systems have purified brackish water and sea water for the military, businesses and farms in many different locations on planet Earth. Reverse osmosis water purification will create clean drinkable water when used on your drinking water.

Reverse osmosis will generally remove salt, manganese, iron, fluoride, lead, and calcium (Binnie et. al., 2002). Most mineral constituents of water are physically larger than water molecules and they are trapped by the semi-permeable membrane and removed from drinking water when filtered through an RO system (AllAboutWater.org, 2004). Meanwhile, consumers are concerned about the removal of minerals from their drinking water.
Reverse Osmosis (RO) removed 90-99.99% of all the contaminants including minerals from the drinking water supply (see Figure 1). RO removes minerals because they have larger molecules than water. The subject of minerals and RO created controversy and disagreement among water and health professionals. The World Health Organization (WHO) made clarification that majority of healthy minerals are needed for human body is from food or dietary supplementary sources and not from drinking tap water. In addition, minerals found in water can be harmful to human health. The evidence is strong that calcium and magnesium are essential elements for human body (WQA, 2011). However, its a weak argument to suggest that we should make up this deficiency through water consumption (WQA, 2011). Tap water presents a variety of inorganic minerals which the human body has difficulty absorbing (Misner, 2004). Their presence is suspect in a wide array of degenerative diseases, such as hardening of the arteries, arthritis, kidney stones, gall stones, glaucoma, cataracts, hearing loss, emphysema, diabetes, and obesity. What minerals are available, especially in “hard” tap water, are poorly absorbed, or rejected by cellular tissue sites, and, if not evacuated, their presence may cause arterial obstruction, and internal damage (Dennison, 193; Muehling, 1994; Banik, 1989).

Figure 1. Reverse Osmosis Membrane (Source:DOI-BUR, 2009)

Organic Minerals vs. Inorganic Minerals
There are two types of minerals in water, organic and inorganic. Human physiology has a biological affinity for organic minerals. Most organic minerals for our body functions come from dietary plant foods (Misner, 2004). A growing plant converts the inorganic minerals from the soils to a useful organic mineral (Misner, 2004). When an organic mineral (from a plant food) enters the stomach it must attach itself to a specific protein-molecule (chelation) in order to be absorbed, then it gains access to the tissue sites where it is needed (Misner, 2004). Once a plant mineral is divested within the body, it is utilized as a coenzyme for composing body fluids, forming blood and bone cells, and the maintaining of healthy nerve transmission (Balch & Balch 1990).

Reverse Osmosis has Little Effect on Water pH
Water pH levels will automatically change when water is ingested and comes into contact with the food in your stomach (Wise, 2011). Even on an empty stomach, your stomach acid alone is already several times more acidic than RO water (pH 6-8) with a pH level of 2 (Wise, 2011). The human body regulates pH levels constantly to find balance and equilibrium (see Figure 2). Therefore under normal conditions it will always maintain a neutral 7.4 pH balance (Wise, 2011). The healthy body is very robust and it will restore homeostatic pH fairly quickly and easily (Wise 2011). Soft drinks and sports drinks typically have a pH level of 2.5, orange juice has a 3 pH and coffee has a 4 pH level and we drink these beverages all the time without problems (Wise, 2011).

Figure 2. Comparison of pH Levels (Source: Wise, 2011)

Conclusion
Water filtered or treated by reverse osmosis is generally pure, clean, and healthy. A reverse osmosis treatment system is currently the only technology that can remove most of the emerging contaminants (i.e., prescription drugs and perchlorate) including other contaminants (i.e., arsenic, cyanide, and fluoride) that are difficult to remove by other treatment methods. No more ingesting of harmful inorganic minerals means the body will no longer be stressed with trying to absorb something that wasn’t supposed to be there in the first place (Wise, 2011). Consumers should not be concerned about the removal of minerals by RO system. As the WHO (2009) and WQA (2011) pointed out, the human body obtains the vast majority of minerals from food or supplements, not from drinking water.

One of the downsides to the reverse osmosis process is that it is so effective in removing particles, it will also remove minerals from your water that may be beneficial. The body needs certain minerals, such as calcium and magnesium, to function properly. In addition, some people believe minerals such as this actually add flavor to the water, so that will be missing if you filter the water. Some find a certain acidic taste to water that has been purified by reverse osmosis. A reverse osmosis system also wastes a certain amount of water. For every gallon of purified water, three or four gallons have to be processed. If water is scarce or expensive in your area, this is a strong consideration.

The Myron L RO-1 was developed years ago specifically for Culligan, and is designed for testing RO systems.

RO-1 Meter

The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids (ppm/TDS) of any drinking water.

With a single ‘before and after’ test, this handy device effectively demonstrates how your RO or distillation system eliminates harmful dissolved solids. It will also service test systems, including membrane evaluation programs. Find out more about the RO-1 meter HERE.

Categories : Case Studies & Application Stories, Product Updates, Science and Industry Updates

Reverse osmosis biofouling: Impact of feed channel spacer and biofilm development in spacer-filled channels – MyronLMeters.com

Posted by 9 Jan, 2013

TweetIntroduction Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by […]

Introduction

Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by a biofouling problem –a problem related to biological material development which forms a sticky layer on the membrane surface (Flemming, 1997; Baker and Dudley, 1998).

Continuous biofouling problems in RO lead to higher energy input requirement as an effect of increased biofilm resistance (Rf) and biofilm enhanced osmotic pressure (BEOP), lower quality of product water due to concentration polarization (CP) – increased concentration due to solutes accumulation on the membrane surface, (Herzberg and Elimelech, 2007), and thus significant increase in both operating and maintenance costs.

Recent studies and objectives

Recent studies show the importance of the operating conditions (e.g. flux and cross flow velocities) in RO biofouling. The presence of feed channel spacers has also been getting more attention as it may have adverse effects. A previous study (Chong et al., 2008) without feed channel spacers showed that RO biofouling was a flux driven process where higher flux increased fouling rate. It was also shown that biofouling caused a BEOP effect due to elevated CP of solutes at the membrane surface, thus resulted in loss of driving force. The BEOP effect was more severe at high flux and low crossflow operation.

In another recent study (Vrouwenvelder et al., 2009a) involving feed channel spacers suggested that flux did not affect fouling and biofouling was more severe when the crossflow velocity was higher. However, these studies were conducted on river water at low level of salinity and under no/very low flux conditions, which may suggested that BEOP effect was not observed in the above studies. These contradictory observations relating to the biofouling process in RO need to be systematically addressed as it is critical to understand the mechanism for sustainable operation of RO technology.

The objective of this study was to observe the impact of spacer towards RO biofouling as well as to investigate the development of biofilm in a spacer filled channel. The experiments were conducted at constant flux and biofouling was observed by the increase of transmembrane pressure (TMP). Observation with confocal light scanning microscope (CLSM) method was conducted to the fouled membrane and spacers to provide information of biofilm development inside the membrane module.

Materials and methods

A lab-scale set-up was arranged to resemble the real RO operation where experiments were performed with elevated salinity, high pressure, imposed flux, and permeation. The schematic diagram of the set-up is depicted in Figure 1. It is a fully-recycled system with two identical RO modules running in series. Feed solution contained constant amounts NaCl and nutrient broth (NB) to provide sufficient TOC level.

The study was conducted in the constant flux mode and biofouling was measured via the rise in TMP. A mass-flow controller was installed at the permeate side to maintain the amount of permeate withdrawn. A bacteria solution was injected into the system before the feed solution entered the RO modules and a set of microfilters (5 μm and 0.2 μm) were installed at downstream to prevent excess bacteria from entering the feed tank and turning the feed tank into an “active bioreactor”.

reverseos1.jpg

Model bacteria Pseudomonas aeruginosa (PAO1) was used in the experiment. Bacteria stock solution used in the biofouling tests was prepared in batch and the stock solution was replenished every 24 hours. Bacteria were grown in mixture of NB and NaCl solution where they were harvested after 24 hours and diluted into autoclaved salt solution. The concentration of bacteria was controlled and measured by optical density (OD) using UV spectrophotometer at 600 nm. Batch prepared bacteria stock solution has some advantages over using continuous feed from a chemostat (Chong et al., 2008). A more consistent and fresh bacteria load and without excess nutrient was introduced into the system as nutrient content was completely removed in the harvesting step.

Prior to every experiment, cut RO membranes (DOW Filmtec, BW-30) were soaked in Milli-Q water and sterilized in 70% ethanol solution. Similar pretreatment procedures were applied to membrane support layers and feed channel spacers prior every experiment. The spacers used in the experiments are obtained from unused Hydranautics LFC-1 spiral wound module (Figure 2).

reverseos2.jpg

The membranes were compacted at a maximum flux (~65 L/m2.h) overnight with Milli-Q water until a stable flux was achieved. Following compaction, the flux was set to the desired values and NaCl solution was added into the feed tank until the desired concentration was achieved. The system was let to mix for 1.5 hours. NB solution was then added into the feed tank to provide an average background nutrient concentration of 6.5 mg/L TOC. The system was allowed to well-mix for 1.5 hours.

The biofouling test was initiated by continuous injection of bacteria stock solution into the flow line at a dilution rate of 1:500 based on RO cross-flow rate. Biofilm was allowed to grow on the RO membranes. TMP rise due to biofouling was measured over time. The solution in the feed tank was removed and replaced with a fresh solution at the same NaCl and NB concentration twice per day in order to maintain the freshness level of the feed solution.

Upon completion of the fouling test, the RO system was cleaned with:
 Tap water adjusted to pH 2 with HNO3 for 1.5 hours
 Tap water adjusted to pH 11 with NaOH for 1.5 hours
 Flowing tap water for rinsing for 1.5 hours
 Final rinsing with Milli-Q water at unadjusted pH

The fouled membranes were removed from the RO cells for membrane autopsy. In this analysis, fluorescence staining methods and confocal laser scanning microscope (CLSM) were used to detect the biofilm.

Biofilms were prepared for CLSM by staining with the LIVE/DEAD BacLight Bacterial Viability Kits (Molecular Probes, L7012). It consists of SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide (PI). These stains possess different spectral characteristics and different ability to penetrate healthy bacterial cells. When used alone, the SYTO 9 stain generally labels all bacteria in a population — those with intact and damaged membranes. In contrast, propidium iodide penetrates only bacteria with damaged membranes, causing a reduction in the SYTO 9 stain fluorescence when both dyes are present. Thus, with an appropriate mixture of the SYTO 9 and propidium iodide stains, bacteria with intact cell membranes stain fluorescent green, whereas bacteria with damaged membranes stain fluorescent red.

Microscopic observation and image acquisition of biofilms were performed using a confocal laser scanning microscope (ZEISS, model LSM710), equipped with Argon laser at 488 nm and DPSS561-10 laser at 561 nm. Images were captured using confocal microscope bundled program ZEN 2009.

Results and discussions

The cross-flow velocity (CFV) in RO membrane operations is known to affect fouling rate. At higher CFV, the flow causes scouring effects which results in slower fouling (Koltuniewicz et al., 1995). On the other hand, experiments of RO modules without the presence of flux shows that a higher cross-flow velocity may increase biofouling due to more nutrients supply (Vrouwenvelder et al., 2009b).

In our study, the investigation was carried out by varying the cross-flow velocity (CFV) from
0.1, 0.17, to 0.34 m/s. The NaCl concentration used was constant at 2000 mg/L and the applied flux was constant at 35 LMH. TMP values were measured overtime and normalized to the initial TMP.

PagesfromIWAWaterwiki2-3.jpg

Figure 3 shows the normalized TMP profiles. Faster TMP rise was observed at lower CFV and both operation with and without spacer show similar profiles. The delay of TMP rise caused by spacer was quantified by measuring the time needed for the TMP to increase by 10 % (Table 1). The effect of spacer was higher at higher CFV where the percentage of the delay was 21.21 % and 42.87 % at 0.10 m/s and 0.17 m/s respectively. An interesting phenomenon was observed during the earlier TMP rise (0-3 days) where change in CFV gives little effect on TMP profiles. Similar phenomenon was observed for operation with and without spacer. A possible explanation for this phenomenon is that during this period bacterial attachment was dominant and therefore operation at constant flux gives similar initial TMP rise. Previous studies (Chong et al., 2008) have shown previously that membrane biofouling is a flux driven process where higher flux increases the TMP rise. However, their study did not include spacers and did not focus on initial TMP rise.

Table 1. The delay of biofouling rate caused by spacer at different CFV

PagesfromIWAWaterwiki2-4.jpg

PagesfromIWAWaterwiki2-5.jpg

The effect of different salt concentrations was also investigated. In this experiment the flux and CFV were fixed at 35 LMH and 0.17 m/s respectively. Figure 4 shows the normalized TMP profile of three different NaCl concentrations in the feed solution. When the feed channel spacer was absent it was very obvious that faster TMP rise was observed at higher salt concentration. This suggests that the effect of concentration polarization (CP) increases with the salt concentration and confirms the presence of the biofilm enhanced osmotic pressure (BEOP) effect (Herzberg and Elimelech, 2007; Chong et al., 2008). This phenomenon however, was less obvious when the spacer was present on the membrane. The spacer appears to provide flow eddies thus reducing the effect of CP and to be useful to prevent biofouling on the membrane which was indicated with slower TMP rise. The spacer gives bigger effect at higher salt concentration where the time to reach 10 % TMP rise was delayed by 30 % at 100 mg/L and 2000 mg/L NaCl, and 95.7 % at 4000 mg/L (Table 2).

PagesfromIWAWaterwiki2-6.jpg

4.2 Biofilm development in spacer-filled RO membrane channel The development of biofilm in spacer-filled channel was observed via microscopic and microscopic method. Macroscopic images are to show overall uniformity of biofilm distribution, while the microscopic images are able to show a more detailed biofilm patterns. All of the images in this study were taken from separate experiments as the samples were unable to be reused after analysis, however all the conditions for the experiments were maintained the same.

Figure 5 shows the macroscopic images of biofilm development. The biofilm sample on the membranes and spacers were stained with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) dye. CTC stains bacteria with respiration activity and stained cells appear in red colour. Analysis was done after 0, 3, 6, and 10 days, the condition was 35 LMH flux, 0.17 m/s CFV, and 4000 mg/L NaCl concentration. Longer experiment duration gives thicker and denser biofilm, which can be seen from higher red colour intensity. The biofilms have also shown overall uniformity across the membrane area where similar patterns were observed among each spacer squares.

PagesfromIWAWaterwiki2-7.jpg

Figure 5. Macroscopic images of biofilm development on membranes and spacers. (A) 0-day, (B) 3-day, (C) 6-day, (D) 10-day. Biofilms stained with CTC dye and images taken with SONY NEX-5 digital camera.

Confocal laser scanning microscope (CLSM) provides a more detailed analysis of biofilm development (Figure 6). Based on the images, it appears that biofilm was initiated on the membrane; it later covered more areas and started to appear on the spacer. Areas behind the attached filaments of the spacer fiber seem to be suitable for the initial bacterial attachments rather than the centre of the spacer. Biofilm build-up observed on areas under the detached filaments was caused by higher shear due to accelerated CFV. Our experiments confirmed that biofouling in RO is a flux driven process. A lower TMP rise was observed at lower flux, which means slower biofouling rate. This is also supported with the biofilm coverage data where less coverage was observed at lower flux.

PagesfromIWAWaterwiki2-8.jpg

Conclusions

From the findings above, several conclusions can be drawn. The hydrodynamic condition of the flow is affecting the biofouling process. Cross flow velocity (CFV) is an important parameter and lower fouling can be achieved at higher CFV. Having feed channel spacers on the membrane is advantageous as it provides a more well-mixed flow, reduces concentration polarization and reduces TMP increase. Biofilm enhanced osmotic pressure (BEOP) was another phenomenon observed in this study. Due to the BEOP effect, a faster TMP rise was achieved at higher salinity. However, with the presence of the spacer the BEOP effect was reduced significantly.

From our microscopic analysis of biofilm shows that initial bacterial deposition and biofilm development was started on the membrane especially on areas behind the attached spacer filaments. Biofilm develops over time to cover more areas and starts to grow on the spacer at the later stages. Imposed flux also influences the biofilm development where lower biofouling is achieved at lower flux.

References

Baker, J. S. and Dudley, L. Y. (1998), “Biofouling in membrane systems – a review”, Desalination, Vol. 118, No. 1-3, pp. 81-90.

Chong, T. H., Wong, F. S. and Fane, A. G. (2008), “The effect of imposed flux on biofouling in reverse osmosis: Role of concentration polarisation and biofilm enhanced osmotic pressure phenomena”, Journal of Membrane Science, Vol. 325, No. 2, pp. 840-850.

Flemming, H. C. (1997), “Reverse osmosis membrane biofouling”, Experimental Thermal and Fluid Science, Vol. 14, No. 4, pp. 382-391.

Herzberg, M. and Elimelech, M. (2007), “Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure”, Journal of Membrane Science, Vol. 295, No. 1-2, pp.
11-20.

Koltuniewicz, A. B., Field, R. W. and Arnot, T. C. (1995), “Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline”, Journal of Membrane Science, Vol. 102, No. 1-3, pp. 193-207.

Suwarno, S. R., Puspitasari, V. L., Chong, T. H., Fane, A. G., Chen, X., Rice, S. A., Mcdougald, D. and Cohen, Y. (2010) “The hydrodynamic effect on biofouling in reverse osmosis membrane processes”, IWA International Young Water Professionals Conference, Sydney,

Vrouwenvelder, J. S., Hinrichs, C., Van Der Meer, W. G., Van Loosdrecht, M. C. and Kruithof, J. C. (2009b), “Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction”, Biofouling, Vol. 25, No. 6, pp. 543-555.

Wangnick (2005), 2004 Worldwide Desalting Plants Directory, Global Water Intelligence, Oxford, England.

Related Publications

Experimental Methods in Wastewater Treatment – M.C.M. van Loosdrecht, J. Keller, P.H. Nielsen, C.M. Lopez-Vazquez and D. Brdjanovic
Publication Date: Feb 2014 – ISBN – 9781780404745

Publication Date: Jan 2014 – ISBN – 9781780404769

 

Categories : Science and Industry Updates

Wastewater Treatment Technologies – Myron L Meters Blog

Posted by 24 Oct, 2012

TweetHow many of these wastewater treatment technologies are you familiar with?  What is the most effective combination of processes? How do you measure results? Who’s doing the best wastewater treatment research? Is this the best way? Or can the processes below be recombined, rethought, and retooled into something better? Activated sludge systems Advanced oxidation process […]

How many of these wastewater treatment technologies are you familiar with?  What is the most effective combination of processes?

How do you measure results? Who’s doing the best wastewater treatment research?

Is this the best way? Or can the processes below be recombined, rethought, and retooled into something better?

Activated sludge systems

Advanced oxidation process

Aerated lagoon

Aerobic granular reactor

Aerobic treatment system

Anaerobic clarigester

Anaerobic digestion

Anaerobic filter

API oil-water separator

Anaerobic lagoon

Bioconversion of biomass to mixed alcohol fuels

Bioreactor

Bioretention

Biorotor

Carbon filtering

Cesspit

Coarse bubble diffusers

Composting toilet

Constructed wetland

Dark fermentation

Dissolved air flotation

Distillation

Desalination

EcocyclET systems

Electrocoagulation

Electrodeionization

Electrolysis

Expanded granular sludge bed digestion

Facultative lagoon

Fenton’s reagent

Fine bubble diffusers

Flocculation & sedimentation

Flotation process

Froth flotation

Humanure (composting)

Imhoff tank

Iodine

Ion exchange

Lamella clarifier (Inclined Plate Clarifier) [2]

Living machines

Maceration (sewage)

Microbial fuel cell

Membrane bioreactor

Nanotechnology

NERV (Natural Endogenous Respiration Vessel)

Parallel plate oil-water separator

Reed bed

Retention basin

Reverse osmosis

Rotating biological contactor

Sand filter

Sedimentation

Sedimentation (water treatment)

Septic tank

Sequencing batch reactor

Sewage treatment

Stabilization pond

Submerged aerated filter

Treatment pond

Trickling filter

soil bio-technology

Ultrafiltration (industrial)

Ultraviolet disinfection

Upflow anaerobic sludge blanket digestion

Wet oxidation

MyronLMeters.com serves the wastewater treament industry with the finest handheld and inline water quality meters.

Please continue this discussion in our Linkedin Users group here:

http://www.linkedin.com/groups/Myron-L-Meters-Users-Group-4584088?gid=4584088&mostPopular=&trk=tyah

or on Facebook here:

https://www.facebook.com/myronlmeters

Categories : Science and Industry Updates

TDS (Total Dissolved Solids) and TDS Meters – MyronLMeters.com

Posted by 4 Oct, 2012

TweetA TDS Meter indicates the Total Dissolved Solids (TDS) of a solution (the concentration of dissolved solids in it). Since dissolved ionized solids such as salts and minerals increase the conductivity of a solution, a TDS meter measures the conductivity of the solution and estimates the TDS from that. Dissolved organic solids such as sugar […]

A TDS Meter indicates the Total Dissolved Solids (TDS) of a solution (the concentration of dissolved solids in it). Since dissolved ionized solids such as salts and minerals increase the conductivity of a solution, a TDS meter measures the conductivity of the solution and estimates the TDS from that.
Dissolved organic solids such as sugar and colloids don’t affect the conductivity of a solution much so a TDS meter does not include them in its reading.

Units of TDS

A TDS meter usually displays TDS in parts per million (ppm). For example, a TDS reading of 1 ppm would indicate there is 1 milligram of dissolved solids in each kilogram of water.

Measurement

The two chief methods of measuring total dissolved solids are gravimetry and conductivity. Gravimetric methods are the most accurate and involve evaporating the liquid solvent and measuring the mass of residues left. This method is generally the best but time-consuming. If inorganic salts comprise the majority of TDS, gravimetric methods are recommended.

Electrical conductivity of water is directly related to the concentration of dissolved ionized solids in the water. Ions from the dissolved solids in water create the water’s ability to conduct an electrical current, which can be measured using a conventional conductivity meter or TDS meter. When correlated with laboratory TDS measurements, conductivity provides an approximate value for the TDS concentration.

TDS

Total Dissolved Solids (TDS) is a measure of the combined content of all inorganic and organic substances contained in a liquid in: molecular, ionized or micro-granular (colloidal sol) suspended form. The operational definition is that the solids must be small enough to survive filtration through a two micrometer sieve. Total dissolved solids are normally discussed only for freshwater systems, as salinity comprises some of the ions constituting the definition of TDS. The principal application of TDS is in the study of water quality for streams, rivers and lakes, although TDS is not generally considered a primary pollutant (e.g. it is not deemed to be associated with health effects) it is used as an indication of aesthetic characteristics of drinking water and as an aggregate indicator of the presence of a broad array of chemical contaminants.
Primary sources for TDS in receiving waters are agricultural and residential runoff, leaching of soil contamination and point source water pollution discharge from industrial or sewage treatment plants. The most common chemical constituents are calcium, phosphates, nitrates, sodium, potassium and chloride, which are found in nutrient runoff, storm water runoff and runoff from snowy climates where road de-icing salts are applied. The chemicals may be cations, anions, molecules or agglomerations on the order of one thousand or fewer molecules, so long as a soluble micro-granule is formed. More exotic and harmful elements of TDS are pesticides arising from surface runoff. Certain naturally occurring total dissolved solids arise from the weathering and dissolution of rocks and soils. The United States has established a secondary water quality standard of 500 mg/l to provide for palatability of drinking water.

TDS Measurement Applications

High TDS levels indicate hard water, which can cause scale buildup in pipes, valves, and filters, reducing performance and adding to system maintenance costs. These effects can be seen in aquariums, spas, swimming pools, and reverse osmosis water treatment systems. Typically, in these applications, total dissolved solids are tested frequently, and filtration membranes are checked in order to prevent adverse effects.
In the case of hydroponics and aquaculture, TDS is often monitored in order to create a water quality environment favorable for organism productivity. For freshwater oysters, trouts, and other high value seafood, highest productivity and economic returns are achieved by mimicking the TDS and pH levels of each species’ native environment. For hydroponic uses, TDS is considered one of the best indices of nutrient availability for the aquatic plants being grown.

Because the threshold of acceptable aesthetic criteria for human drinking water is 500 mg/l, there is no general concern for odor, taste, and color at a level much lower than is required for harm. A number of studies have been conducted and indicate various species’ reactions range from intolerance to outright toxicity due to elevated TDS. The numerical results must be interpreted cautiously, as true toxicity outcomes will relate to specific chemical constituents. Nevertheless, some numerical information is a useful guide to the nature of risks in exposing aquatic organisms or terrestrial animals to high TDS levels. Most aquatic ecosystems involving mixed fish fauna can tolerate TDS levels of 1000 mg/l.

Applications
Boilers & cooling towers, Deionization, Reverse osmosis, Chemical concentrations, Printing fountain solutions, Swimming pools & spas, Water pollution control, Wastewater & more…
Myron L Meters Top-selling TDS Meters

Myron L Ultrapen PT1

Ultrapen PT1 Conductivity, TDS, Salinity pen

 

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Ultrapen-PT1-Multiparameter-Meter-p/dh-up-pt1.htm

ULTRAPEN PT1 Conductivity – TDS – Salinity Pen
Accuracy of +/-1% of READING (+/-.2% at Calibration Point)
Reliable Repeatable Results
Solution modes: KCl, NaCl and 442
Automatic Temperature Compensation
Autoranging
Durable, Fully Potted Circuitry
Waterproof

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Analog-Conductivity-Multirange-Meter-p/ah-ds-ep-10.htm

EP-10: 0-10, 100, 1000, 10,000 micromhos/microsiemens
Instant and accurate TDS tests
Electronic Internal Standard for easy field calibration
Fast Auto Temperature Compensation
Rugged design for years of trouble-free testing
Simple to use

Multi-Parameter: Conductivity, TDS, Resistivity, Temperature

 

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Ultrameter-II-4P-Multiparameter-Meter-p/dh-umii-4pii.htm

Multi-Parameter: Conductivity, TDS, Resistivity, Temperature
+/-1% Accuracy of Reading
Memory Storage: Save up to 100 samples w/ Date & Time stamp
Wireless Download Module Optional
Waterproof

 

material from Wikipedia shared via  Creative Commons Attribution-ShareAlike License

Categories : Product Updates, Science and Industry Updates

Reverse Osmosis and RO Meters – MyronLMeters.com

Posted by 1 Oct, 2012

TweetReverse Osmosis and RO Meters – MyronLMeters.com               Schematics of a reverse osmosis system (desalination) using a pressure exchanger. 1: Sea water inflow, 2: Fresh water flow (40%), 3: Concentrate flow (60%), 4: Sea water flow (60%), 5: Concentrate (drain), A: Pump flow (40%), B: Circulation pump, C: Osmosis unit […]

Reverse Osmosis and RO Meters – MyronLMeters.com

 

 

 

 

 

 

 

Schematics of a reverse osmosis system (desalination) using a pressure exchanger.
1: Sea water inflow,
2: Fresh water flow (40%),
3: Concentrate flow (60%),
4: Sea water flow (60%),
5: Concentrate (drain),
A: Pump flow (40%),
B: Circulation pump,
C: Osmosis unit with membrane,
D: Pressure exchanger

Reverse osmosis (RO) is a membrane-technology filtration method that removes many types of large molecules and ions from solutions by applying pressure to the solution when it is on one side of a selective membrane. The result is that the solute is retained on the pressurized side of the membrane and the pure solvent is allowed to pass to the other side. To be “selective,” this membrane should not allow large molecules or ions through the pores (holes), but should allow smaller components of the solution (such as the solvent) to pass freely.

In normal osmosis, the solvent naturally moves from an area of low solute concentration (High Water Potential), through a membrane to an area of high solute concentration (Low Water Potential). The movement of a pure solvent to equalize solute concentrations on each side of a membrane generates osmotic pressure. Applying an external pressure to reverse the natural flow of pure solvent, thus, is reverse osmosis. The process is similar to other membrane technology applications. However, there are key differences between reverse osmosis and filtration. The predominant removal mechanism in membrane filtration is straining, or size exclusion, so the process can theoretically achieve perfect exclusion of particles regardless of operational parameters such as influent pressure and concentration. Reverse osmosis, however, involves a diffusive mechanism so that separation efficiency is dependent on solute concentration, pressure, and water flux rate. Reverse osmosis is most commonly known for its use in drinking water purification from seawater, removing the salt and other substances from the water molecules.

Reverse osmosis is the process of forcing a solvent from a region of high solute concentration through a semipermeable membrane to a region of low solute concentration by applying a pressure in excess of the osmotic pressure. The largest and most important application of reverse osmosis is to the separation of pure water from seawater and brackish waters; seawater or brackish water is pressurized against one surface of the membrane, causing transport of salt-depleted water across the membrane and emergence of potable drinking water from the low-pressure side.

The membranes used for reverse osmosis have a dense layer in the polymer matrix — either the skin of an asymmetric membrane or an interfacially polymerized layer within a thin-film-composite membrane — where the separation occurs. In most cases, the membrane is designed to allow only water to pass through this dense layer, while preventing the passage of solutes (such as salt ions). This process requires that a high pressure be exerted on the high concentration side of the membrane, usually 2–17 bar (30–250 psi) for fresh and brackish water, and 40–82 bar (600–1200 psi) for seawater, which has around 27 bar (390 psi)[3] natural osmotic pressure that must be overcome. This process is best known for its use in desalination (removing the salt and other minerals from sea water to get fresh water), but since the early 1970s it has also been used to purify fresh water for medical, industrial, and domestic applications.

Osmosis describes how solvent moves between two solutions separated by a permeable membrane to reduce concentration differences between the solutions. When two solutions with different concentrations of a solute are mixed, the total amount of solutes in the two solutions will be equally distributed in the total amount of solvent from the two solutions. Instead of mixing the two solutions together, they can be put in two compartments where they are separated from each other by a semipermeable membrane. The semipermeable membrane does not allow the solutes to move from one compartment to the other, but allows the solvent to move. Since equilibrium cannot be achieved by the movement of solutes from the compartment with high solute concentration to the one with low solute concentration, it is instead achieved by the movement of the solvent from areas of low solute concentration to areas of high solute concentration. When the solvent moves away from low concentration areas, it causes these areas to become more concentrated. On the other side, when the solvent moves into areas of high concentration, solute concentration will decrease. This process is termed osmosis. The tendency for solvent to flow through the membrane can be expressed as “osmotic pressure”, since it is analogous to flow caused by a pressure differential. Osmosis is an example of diffusion.

In reverse osmosis, in a similar setup as that in osmosis, pressure is applied to the compartment with high concentration. In this case, there are two forces influencing the movement of water: the pressure caused by the difference in solute concentration between the two compartments (the osmotic pressure) and the externally applied pressure.

Around the world, household drinking water purification systems, including a reverse osmosis step, are commonly used for improving water for drinking and cooking.

Such systems typically include a number of steps:

a sediment filter to trap particles, including rust and calcium carbonate

optionally, a second sediment filter with smaller pores

an activated carbon filter to trap organic chemicals and chlorine, which will attack and degrade TFC reverse osmosis membranes

a reverse osmosis (RO) filter, which is a thin film composite membrane (TFM or TFC)

optionally, a second carbon filter to capture those chemicals not removed by the RO membrane

optionally an ultra-violet lamp for sterilizing any microbes that may escape filtering by the reverse osmosis membrane

In some systems, the carbon prefilter is omitted, and cellulose triacetate membrane (CTA) is used. The CTA membrane is prone to rotting unless protected by chlorinated water, while the TFC membrane is prone to breaking down under the influence of chlorine. In CTA systems, a carbon postfilter is needed to remove chlorine from the final product, water.

Portable reverse osmosis (RO) water processors are sold for personal water purification. To work effectively, the water feeding to these units should be under some pressure (40 psi or greater is the norm). Portable RO water processors can be used by people who live in rural areas without clean water, far away from the city’s water pipes. Rural people filter river or ocean water themselves, as the device is easy to use (saline water may need special membranes). Some travelers on long boating, fishing, or island camping trips, or in countries where the local water supply is polluted or substandard, use RO water processors coupled with one or more UV sterilizers. RO systems are also now extensively used by marine aquarium enthusiasts. In the production of bottled mineral water, the water passes through an RO water processor to remove pollutants and microorganisms. In European countries, though, such processing of Natural Mineral Water (as defined by a European Directive) is not allowed under European law. In practice, a fraction of the living bacteria can and do pass through RO membranes through minor imperfections, or bypass the membrane entirely through tiny leaks in surrounding seals. Thus, complete RO systems may include additional water treatment stages that use ultraviolet light or ozone to prevent microbiological contamination.

Membrane pore sizes can vary from 0.1 nanometres (3.9×10−9 in) to 5,000 nanometres (0.00020 in) depending on filter type. “Particle filtration” removes particles of 1 micrometre (3.9×10−5 in) or larger. Microfiltration removes particles of 50 nm or larger. “Ultrafiltration” removes particles of roughly 3 nm or larger. “Nanofiltration” removes particles of 1 nm or larger. Reverse osmosis is in the final category of membrane filtration, “hyperfiltration”, and removes particles larger than 0.1 nm.

Water and waste water purification

Rain water collected from storm drains is purified with reverse osmosis water processors and used for landscape irrigation and industrial cooling in Los Angeles and other cities, as a solution to the problem of water shortages.

In industry, reverse osmosis removes minerals from boiler water at power plants. The water is boiled and condensed repeatedly. It must be as pure as possible so that it does not leave deposits on the machinery or cause corrosion. The deposits inside or outside the boiler tubes may result in under-performance of the boiler, bringing down its efficiency and resulting in poor steam production, hence poor power production at turbine.

It is also used to clean effluent and brackish groundwater. The effluent in larger volumes (more than 500 cu. meter per day) should be treated in an effluent treatment plant first, and then the clear effluent is subjected to reverse osmosis system. Treatment cost is reduced significantly and membrane life of the RO system is increased.

The process of reverse osmosis can be used for the production of deionized water.

RO process for water purification does not require thermal energy. Flow through RO system can be regulated by high pressure pump. The recovery of purified water depends upon various factors including membrane sizes, membrane pore size, temperature, operating pressure and membrane surface area.

In 2002, Singapore announced that a process named NEWater would be a significant part of its future water plans. It involves using reverse osmosis to treat domestic wastewater before discharging the NEWater back into the reservoirs.

Food industry

In addition to desalination, reverse osmosis is a more economical operation for concentrating food liquids (such as fruit juices) than conventional heat-treatment processes. Research has been done on concentration of orange juice and tomato juice. Its advantages include a lower operating cost and the ability to avoid heat-treatment processes, which makes it suitable for heat-sensitive substances like the protein and enzymes found in most food products.

Reverse osmosis is extensively used in the dairy industry for the production of whey protein powders and for the concentration of milk to reduce shipping costs. In whey applications, the whey (liquid remaining after cheese manufacture) is concentrated with RO from 6% total solids to 10–20% total solids before UF (ultrafiltration) processing. The UF retentate can then be used to make various whey powders, including whey protein isolate used in bodybuilding formulations. Additionally, the UF permeate, which contains lactose, is concentrated by RO from 5% total solids to 18–22% total solids to reduce crystallization and drying costs of the lactose powder.

Although use of the process was once avoided in the wine industry, it is now widely understood and used. An estimated 60 reverse osmosis machines were in use in Bordeaux, France in 2002. Known users include many of the elite classed growths.

Car washing

Because of its lower mineral content, reverse osmosis water is often used in car washes during the final vehicle rinse to prevent water spotting on the vehicle. Reverse osmosis is often used to conserve and recycle water within the wash/pre-rinse cycles, especially in drought stricken areas where water conservation is important. Reverse osmosis water also enables the car wash operator to reduce the demands on the vehicle drying equipment, such as air blowers.

Maple syrup production

In 1946, some maple syrup producers started using reverse osmosis to remove water from sap before the sap is boiled down to syrup. The use of reverse osmosis allows approximately 75-90% of the water to be removed from the sap, reducing energy consumption and exposure of the syrup to high temperatures. Microbial contamination and degradation of the membranes has to be monitored.

Hydrogen production

For small-scale production of hydrogen, reverse osmosis is sometimes used to prevent formation of minerals on the surface of electrodes.

Reef aquariums

Many reef aquarium keepers use reverse osmosis systems for their artificial mixture of seawater. Ordinary tap water can often contain excessive chlorine, chloramines, copper, nitrogen, phosphates, silicates, or many other chemicals detrimental to the sensitive organisms in a reef environment. Contaminants such as nitrogen compounds and phosphates can lead to excessive, and unwanted, algae growth. An effective combination of both reverse osmosis and deionization (RO/DI) is the most popular among reef aquarium keepers, and is preferred above other water purification processes due to the low cost of ownership and minimal operating costs. Where chlorine and chloramines are found in the water, carbon filtration is needed before the membrane, as the common residential membrane used by reef keepers does not cope with these compounds.

Desalination

Areas that have either no or limited surface water or groundwater may choose to desalinate seawater or brackish water to obtain drinking water. Reverse osmosis is a common method of desalination, although 85 percent of desalinated water is produced in multistage flash plants.[5]

Large reverse osmosis and multistage flash desalination plants are used in the Middle East, especially Saudi Arabia. The energy requirements of the plants are large, but electricity can be produced relatively cheaply with the abundant oil reserves in the region. The desalination plants are often located adjacent to the power plants, which reduces energy losses in transmission and allows waste heat to be used in the desalination process of multistage flash plants, reducing the amount of energy needed to desalinate the water and providing cooling for the power plant.

Sea water reverse osmosis (SWRO) is a reverse osmosis desalination membrane process that has been commercially used since the early 1970s. Its first practical use was demonstrated by Sidney Loeb and Srinivasa Sourirajan from UCLA in Coalinga, California. Because no heating or phase changes are needed, energy requirements are low in comparison to other processes of desalination, but are still much higher than those required for other forms of water supply (including reverse osmosis treatment of wastewater).

The Ashkelon seawater reverse osmosis (SWRO) desalination plant in Israel is the largest in the world. The project was developed as a BOT (Build-Operate-Transfer) by a consortium of three international companies: Veolia water, IDE Technologies and Elran.

The typical single-pass SWRO system consists of the following components:

Intake

Pretreatment

High pressure pump

Membrane assembly

Remineralization and pH adjustment

Disinfection

Alarm/control panel

Pretreatment

Pretreatment is important when working with RO and nanofiltration (NF) membranes due to the nature of their spiral wound design. The material is engineered in such a fashion as to allow only one-way flow through the system. As such, the spiral wound design does not allow for backpulsing with water or air agitation to scour its surface and remove solids. Since accumulated material cannot be removed from the membrane surface systems, they are highly susceptible to fouling (loss of production capacity). Therefore, pretreatment is a necessity for any RO or NF system. Pretreatment in SWRO systems has four major components:

Screening of solids: Solids within the water must be removed and the water treated to prevent fouling of the membranes by fine particle or biological growth, and reduce the risk of damage to high-pressure pump components.

Cartridge filtration: Generally, string-wound polypropylene filters are used to remove particles of 1–5 µm diameter.

Dosing: Oxidizing biocides, such as chlorine, are added to kill bacteria, followed by bisulfite dosing to deactivate the chlorine, which can destroy a thin-film composite membrane. There are also biofouling inhibitors, which do not kill bacteria, but simply prevent them from growing slime on the membrane surface and plant walls.

Prefiltration pH adjustment: If the pH, hardness and the alkalinity in the feedwater result in a scaling tendency when they are concentrated in the reject stream, acid is dosed to maintain carbonates in their soluble carbonic acid form.

CO32– + H3O+ = HCO3– + H2O

HCO3– + H3O+ = H2CO3 + H2O

Carbonic acid cannot combine with calcium to form calcium carbonate scale. Calcium carbonate scaling tendency is estimated using the Langelier saturation index (LSI). Adding too much sulfuric acid to control carbonate scales may result in calcium sulfate, barium sulfate or strontium sulfate scale formation on the RO membrane.

Antiscalants: Scale inhibitors (also known as antiscalants) prevent formation of all scales compared to acid, which can only prevent formation of calcium carbonate and calcium phosphate scales. In addition to inhibiting carbonate and phosphate scales, antiscalants inhibit sulfate and fluoride scales, disperse colloids and metal oxides. Despite claims that antiscalants can inhibit silica formation, there is no concrete evidence to prove that silica polymerization can be inhibited by antiscalants. Antiscalants can control acid soluble scales at a fraction of the dosage required to control the same scale using sulfuric acid.

Some small scale desalination units use Beach wells, they are usually drilled on the seashore in close vicinity to the ocean. These intake facilities are relatively simple to build and the seawater they collect is pretreated via slow filtration through the subsurface sand/seabed formations in the area of source water extraction. Raw seawater collected using beach wells is often of better quality in terms of solids, silt, oil and grease, natural organic contamination and aquatic microorganisms, compared to open seawater intakes. Sometimes, beach intakes may also yield source water of lower salinity.

High pressure pump

The pump supplies the pressure needed to push water through the membrane, even as the membrane rejects the passage of salt through it. Typical pressures for brackish water range from 225 to 375 psi (15.5 to 26 bar, or 1.6 to 2.6 MPa). In the case of seawater, they range from 800 to 1,180 psi (55 to 81.5 bar or 6 to 8 MPa). This requires a large amount of energy.

Membrane assembly

The layers of a membrane

The membrane assembly consists of a pressure vessel with a membrane that allows feed water to be pressed against it. The membrane must be strong enough to withstand whatever pressure is applied against it. RO membranes are made in a variety of configurations, with the two most common configurations being spiral-wound and hollow-fiber.

Remineralization and pH adjustment

The desalinated water is very corrosive and is “stabilized” to protect downstream pipelines and storages, usually by adding lime or caustic to prevent corrosion of concrete lined surfaces. Liming material is used to adjust pH between 6.8 and 8.1 to meet the potable water specifications, primarily for effective disinfection and for corrosion control.

Disinfection

Post-treatment consists of preparing the water for distribution after filtration. Reverse osmosis is an effective barrier to pathogens, however post-treatment provides secondary protection against compromised membranes and downstream problems. Disinfection by means of UV lamps (sometimes called germicidal or bactericidal) may be used to sterilize pathogens which bypassed the reverse osmosis process. Chlorination or chloramination (chlorine and ammonia) protects against pathogens which may have lodged in the distribution system downstream, such as from new construction, backwash, compromised pipes, etc.[citation needed]

Disadvantages

Household reverse osmosis units use a lot of water because they have low back pressure. As a result, they recover only 5 to 15 percent of the water entering the system. The remainder is discharged as waste water. Because waste water carries with it the rejected contaminants, methods to recover this water are not practical for household systems. Waste water is typically connected to the house drains and will add to the load on household septic systems. An RO unit delivering 5 gallons of treated water a day may discharge anywhere between 20 and 90 gallons of waste water a day. For household use, however, and based on consumption of half a gallon per day, this may amount to less than a toilet-flush per day.

Large-scale industrial/municipal systems have a production efficiency of 75% – 80%, or as high as 90%, because they can generate the high pressure needed for more efficient RO filtration. On the other hand, as efficiency of waste water rates increases in commercial operations effective removal rates tend to become reduced, as evidenced by TDS counts.

Reverse Osmosis Removes Minerals

Reverse Osmosis (RO) removesd more than 90-99.99% of all the contaminants including minerals from the drinking water supply. RO removes minerals because they have larger molecules than water. The subject of minerals and RO created controversy and disagreement among water and health professionals.  The World Health Organization (WHO) stated that most of healthy minerals needed by the human body come from food or dietary supplementary sources and not from drinking tap water. In addition, some minerals found in water can be harmful to human health.  The evidence is strong that calcium and magnesium are essential elements for human body.  However, this is not to suggest that we should make up this deficiency through water consumption. Tap water presents a variety of inorganic minerals which human body has difficulty absorbing. Their presence is suspect in a wide array of degenerative diseases, such as hardening of the arteries, arthritis, kidney stones, gall stones, glaucoma, cataracts, hearing loss, emphysema, diabetes, and obesity. What minerals are available, especially in “hard” tap water, are poorly absorbed, or rejected by cellular tissue sites, and, if not evacuated, their presence may cause arterial obstruction, and internal damage (Dennison, 193; Muehling, 1994; Banik, 1989).

A number of studies have looked at the long term health effects of drinking demineralized water. However, demineralized water can be remineralized, and this process has been done in instances when processing demineralized water for consumption. Dasani water uses this process.

Water filtered or treated by RO is generally pure, clean, and healthy.  RO treatment is currently the only technology that can remove emerging contaminants (prescription drugs and perchlorate) and some others (i.e., arsenic, cyanide, and fluoride) that are difficult to remove by other methods. Consumers should not be concerned about the removal of minerals by RO system.  WHO (2009) and WQA (2011) pointed out, that the human body obtains most minerals from food or supplements, not from drinking water.

Popular RO Meters

RO Meter – RO-1: 0-1250 ppm with color band

 

 

 

 

 

 

 

 

 

Instant and accurate TDS tests
Electronic Internal Standard for easy field calibration
Fast Auto Temperature Compensation
Rugged design for years of trouble-free testing
Simple to use

 

758II: Conductivity Digital Monitor/Controller

Conductivity monitor/controller

 

 

 

 

 

 

 

 

 

The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids (ppm/TDS) of any drinking water.

With a single ‘before and after’ test, this handy device effectively demonstrates how your RO or distillation system eliminates harmful dissolved solids. It will also service test systems, including membrane evaluation programs.

The unique circuitry of the 750 Series II Conductivity Monitor/controllers guarantees accurate and reliable measurements. Drift-free performance is assured by “field proven” electronics, including automatic DC offset compensation and highly accurate drive voltage.

Since temperature compensation is at the heart of accurate water measurement, all Myron L Monitor/controllers feature a highly refined and precise TC circuit. This feature perfectly matches the water temperature coefficient as it changes. All models corrected to 25’C. The TC may be disabled to conform with USP requirements.

Built-in electronic calibration allows for fast quality checks without standard solutions. (Note: for maximum system accuracy standard solutions are recommended).

Aquaswitch I 

Aquaswitch

 

 

 

 

 

 

 

 

 

For use with any two-bank supply systems (DI banks, RO systems, etc)

Must use with Inline Monitor/Controller

The AQUASWITCH I is a special purpose dedicated instrument which automatically “switches” from an exhausted DI or RO bank to a fresh stand-by bank. LEDs continually give the condition of both banks. An alarm output is activated as each bank is depleted.

Ultrameter III – 9PTK

Measures 9 Parameters: Conductivity, Resistivity, TDS, Alkalinity, Hardness, LSI, pH, ORP/Free Chlorine, Temperature
LSI Calculator for hypothetical water balance calculations
Wireless data transfer capability with bluDock option
Auto-ranging delivers increased resolution across diverse applications
Adjustable Temperature Compensation and Cond/TDS conversion ratios for user-defined solutions
Nonvolatile memory of up to 100 readings for stored data protection
Date & time stamp makes record-keeping easy
pH calibration prompts alert you when maintenance is required
Auto-off minimizes energy consumption
Low battery indicator
(Includes instrument with case and solutions)

 

Categories : Product Updates, Science and Industry Updates, Technical Tips

Reverse Osmosis and Measurement for Home and Commercial Systems

Posted by 23 Aug, 2012

Tweet OSMOSIS Osmosis is the phenomenon of lower dissolved solids in water passing through a semi-permeable membrane into higher dissolved solids water until a near equilibrium is reached. Reverse Osmosis (RO) is a membrane process of purification which removes most of the total dissolved solids (TDS) in water by reversing the natural process of osmosis. […]

OSMOSIS

Osmosis is the phenomenon of lower dissolved solids in water passing through a semi-permeable membrane into higher dissolved solids water until a near equilibrium is reached. Reverse Osmosis (RO) is a membrane process of purification which removes most of the total dissolved solids (TDS) in water by reversing the natural process of osmosis. Pressure is applied to a TDS-concentrated solution against a semi-permeable membrane, causing pure water to diffuse through the membrane. RO has become an important process for a wide variety of applications including: medical, laboratory, desalination, industrial wastewater, Deionized (Dl) pretreatment, and drinking water.

TESTING RO WATER QUALITY

Electrical conductivity is the most convenient method for testing RO water quality and membrane performance. Pure water is actually a poor electrical conductor. The amount of ionized substances (salts, acids, or bases) dissolved in water determines its conductivity. Normally, the vast majority of the dissolved minerals in tap, surface or ground water are conductive impurities. Myron L Company has conducted extensive research relating conductivity to TDS, resulting in instrumentation and calibration solutions which have become the standard of the RO industry.

When calibrating your conductivity instrument for testing fresh water, the “442 Natural Water Standard™” solutions are the best choice. These solutions are available in various concentrations.
442 solutions contain the following salts diluted in pure water: 40% sodium bicarbonate, 40% sodium sulfate and 20% sodium chloride. These are the most common salt compounds in surface and ground water. A sodium chloride solution provides better results in brackish or sea water because the predominant salt in these waters is sodium chloride.

ORP

ORP (Oxidation Reduction Potential/REDOX) and pH are important parameters in measuring the success and useful life of an RO membrane. The ORP may be used to determine the activity of an oxidizer. RO membranes are susceptible to attack by oxidizers such as chlorine, bromine, ozone and hydrogen peroxide. The activity of the oxidizer is more informative than the chemical residual because it determines the ability and speed of oxidation. A high ORP reading would indicate a need for pretreatment. A low ORP may indicate biological activity which may cause fouling of the membranes.

ORP can also be used to determine an overfeed of sodium bisulfite, which is used to reduce chlorine. If the ORP reading is under 200 mV, you have a reducing condition. This overfeed costs extra money and can lead to environmental discharge problems. It is best to check the reject water, where the concentration is highest. This will show even minute quantities of oxidizers or reducers.

pH

pH is very useful in predicting membrane life and the scaling potential of feedwater. The higher the pH and calcium, the more likely it is that scale will form on the membranes. However, with silicon based compounds, a low pH will increase the tendency for scaling. Membranes also have a pH range where operation is optimal. It is often useful to check the pH of the reject water to help determine scaling potential.

HOME SYSTEMS
Myron L Meters carries single and multiple range handheld instruments. Model RO-1 and RO-1NC are reliable, single range instruments used to demonstrate the RO process to a prospective buyer. The color coding of the model RO-1 dial dramatizes the difference between high TDS (red- above EPA recommended limits for drinking water), medium TDS (orange – within EPA recommended standards for drinking water), and low TDS RO water (blue-high purity water). Installers prefer the three range 532 models or TechPro II™ TP1 or TPH1 because they are ideal for accurately testing both feed and product water.

COMMERCIAL/INDUSTRIAL
Larger RO systems such as those found in bottled water plants, hospitals, industrial process, or seawater desalination require continuous monitoring to verify water quality and membrane condition. For continuous measurement of water quality, Myron L Meters carries the 720 and 750 Series II Monitor/ controllers. Monitor only, and monitor/controller models are available. Monitor/controller models contain an adjustable set point and a heavy-duty 10 amp relay which can be used to activate alarms, valves, autodialers, etc. A variety of options and outputs are available to cost-effectively tailor the monitor to the particular RO application.

The Ultrameter™ 9PTK, 6PII and 4PII are preferred by water treatment professionals for calibrating and checking Commercial/industrial RO systems. They appreciate the waterproof case, ability to store and record 100 memory data records, and three preprogrammed solution curves. Ultrameters are compact, but their multiple parameters give them the versatility of several instruments.

Myron L Meters also carries pen style meterss for dip or scoop sampling. The ULTRAPEN PT1 delivers stable, lab-accurate readings of Conductivity, TDS, Salinity and Temperature. The PT2 pH and Temperature pen is also available for spot checks and pretreatment screening. Both pens are waterproof, durable, and easy to use with one-button functioning.

Visit us here to save 10% on any of our Myron L meters: http://www.myronlmeters.com/Digital-Multiparameter-Meters-s/48.htm

Categories : Product Updates, Science and Industry Updates

Easy steps to troubleshoot RO and DI water systems

Posted by 12 Mar, 2011

Tweet   How much downtime can you afford?   If you are managing an inline water filtration system such as a reverse osmosis system (RO) or a Deionized water system (DI), then you probably have instrumentation installed in order to monitor the water quality. You rely on the instruments to give accurate and reliable readings, […]

 

Qr-logo

How much downtime can you afford?

 

If you are managing an inline water filtration system such as a reverse osmosis system (RO) or a Deionized water system (DI), then you probably have instrumentation installed in order to monitor the water quality. You rely on the instruments to give accurate and reliable readings, but what happens when the water quality measurements suddenly change? If, For example, the conductivity or TDS numbers are substantially higher or the resistivity reading drops to a low number over night.

 

There are a few things you can do to validate your filtration system and pinpoint the issue. Some RO and DI water systems have sample valves or ports after each filter, so you can draw a water sample and test it. If your water system is set up this way, lucky you! If not, you should consider installing a sample valve or port after each filter in order to test the water quality and performance of the filters.

 

If your water quality measurements suddenly change, the first thing you can do is use a reliable and accurate handheld instrument to test the water quality and compare the readings to your inline instrumentation. Conductivity or TDS measurements are a good indicator of changes in water quality Resistivity measurements are good for DI water systems. Draw a sample of water from your system as close as possible to the location of your inline sensor or probe. If the measurements from your handheld and your inline monitor match then you can begin to troubleshoot your RO or DI water system. If the readings don’t match, you need to troubleshoot your inline monitor to resolve the issue. Contact the supplier of your inline monitor and explain to them that you have verified the water quality of your system with an independent handheld instrument. From there you can diagnose the problem with the inline monitor.

 

Troubleshoot your RO and DI water filtration systems

 

To pinpoint the problem, test at various points throughout your water system. Take conductivity/TDS measurements and record the readings in a data log to identify trends in your water quality. This can help you to evaluate filter and system performance in the future. If you already have these readings, then troubleshooting should be quick and easy.You may be reading this right now because you need to troubleshoot and are not exactly sure where to begin or you don’t have measurement records. In that case, you’ll need to begin sampling the water to identify the issue with the water quality.

 

If you have previously recorded measurements logged…

 

Sample the water before and after each filter, compare the conductivity/TDS measurements to your previous measurements and see if there is a big difference. If so, you may have identified the problem. Continue to do this until you have checked each filter. Replace the ones that are out of performance specification.

 

If you DO NOT have previous recorded measurements logged…

 

Sample the water before and after each filter. Check with the filter manufacturer about the performance specification for each filter. They should be able to tell you the rejection rate, throughput, etc. From there you can determine if the filter is performing to spec based on the before/after measurements. Once you have identified which filter(s) is out of spec, you can begin replacing or changing them.

 

if you do not have a handheld instrument to validate your RO or DI water system, we recommend the Ultrameter II 6P. If you don’t need to test pH or ORP, then get the Ultrameter II 4P. These meters have been used to validate various water systems worldwide,  and are renowned for their accuracy, reliability, and ease of use.

You can check out the Ultrameter II here and save 10% if you order online: http://www.myronlmeters.com/category-s/55.htm

 

More information available at MyronLMeters.com

 

Tags: MyronLMeters.com, Myron L, Ultrameter, Myron L Ultrameter, reverse osmosis, deionized water, RO, DI, water filtration, filtration sytems, water systems 

Categories : Application Advice, Technical Tips

MyronLMeters.com Announces the Myron L Ultrapen PT1

Posted by 28 Feb, 2011

TweetMyronLMeters.com today announced the imminent release of a new Myron L product, the Myron L Ultrapen PT1, a reliable, easy-to-use pen-style meter that measures 3 parameters – conductivity, TDS, and salinity. FOR IMMEDIATE RELEASE San Diego, California, United States of America(Free-Press-Release.com) February 27, 2011 – MyronLMeters.com today announced the arrival of a new Myron L product, the […]

MyronLMeters.com today announced the imminent release of a new Myron L product, the Myron L Ultrapen PT1, a reliable, easy-to-use pen-style meter that measures 3 parameters – conductivity, TDS, and salinity.

FOR IMMEDIATE RELEASE

San DiegoCaliforniaUnited States of America(Free-Press-Release.com) February 27, 2011 –


MyronLMeters.com today announced the arrival of a new Myron L product, the Myron L Ultrapen PT1, a reliable, easy-to-use pen-style meter that measures 3 parameters – conductivity, TDS, and salinity.

“The Myron L Ultrapen PT1 will be available soon

Myron L Ultrapen Conductivity TDS Salinity Meter

Myron L Ultrapen Conductivity TDS Salinity Meter

at MyronLMeters.com,” said James Rutan, president, “and it’s going to be a great seller. The Pocket Tester’s convenience, durability, accuracy, and reliability are unmatched in the industry. It comes complete with a battery installed (and an extra), holster, lanyard, scoop, and instructions. The Myron L PT1 is waterproof, has fully secured circuitry and, as always, MyronLMeters.com has made it easy to order. At MyronLMeters.com, you get a 10% discount…just for ordering online. In addition, all Myron L meters in stock will ship the next business day. The quality of the Ultrapen PT1 and the company’s great reputation for reliable meters is sure to make this a big hit. It even looks great!”

Myron L meters are renowned for their accuracy, reliability, and ease of use, and have applications in automatic rinse tank controls, boiler and cooling towers, circuit board cleanliness testing, deionized water, environmental applications, fountain solutions, dialysis, horticulture, hydroponics, ORP (oxidation reduction potential)/Redox, pool and spa, reverse osmosis, textiles.

MyronLMeters.com has a well-established a web presence on Facebook, Gravatar, Twitter, Squidoo, LinkedIn, and WordPress. MyronLMeters.com encourages customers to join them on these sites for special offers and discounts.

More at http://www.myronlmeters.com


Categories : Product Updates