Horticulture Applications: MyronLMeters.com

Posted by 13 Nov, 2013

Tweet                    WHY ARE TESTS SO IMPORTANT? Modern growing practices include scientific evaluations of soil, water, fertilizers, diseases, etc. While some tests are best performed by a laboratory, others can be easily conducted on location, saving time and money. Three tests in particular, EC, pH, and ALKALINITY, […]

The Myron L Ag-6/pH

 

 

 

 

 

 

 

 

 

 

WHY ARE TESTS SO IMPORTANT?

Modern growing practices include scientific evaluations of soil, water, fertilizers, diseases, etc. While some tests are best performed by a laboratory, others can be easily conducted on location, saving time and money. Three tests in particular, EC, pH, and ALKALINITY, can reveal valuable information about water quality, soil salinity, and fertilizer concentration. Our portable AGRI-METERS™ provide you with a simple, fast, and accurate means of testing these parameters.

WHAT IS ELECTRICAL CONDUCTIVITY (EC)?

EC is the measurement of a solution’s ability to conduct an electrical current. For horticultural applications, the unit of measure is often expressed as millimhos. Absolutely pure water is actually a poor electrical conductor. It is the substances (or electrolytes) dissolved in the water which determine how conductive the solution will be.

Therefore, EC can be an excellent indicator of:

1. Water quality

2. Soil salinity

3. Fertilizer concentration

EC AND WATER QUALITY

The quality of irrigation water is one of the most critical factors influencing your growing operation. It is important to have a complete water analysis performed on a regular basis. Environmental conditions such as drought, changing seasons, heavy rainfall, etc., can cause the concentrations of dissolved salts in your water to vary significantly. These dissolved salts (i.e. calcium, sodium, etc.) can directly affect your plants’ health and, over time, render even the best soil useless.

You can monitor your overall water quality by testing its electrical conductivity with an AGRI-METER™. The higher the EC, the more salts are dissolved in your water. By comparing your EC with previous readings, you can tell if any dramatic changes have occurred. Nutrient deficiencies are possible when water is too pure (low EC) or if the relative concentrations of some nutrients are unbalanced (i.e. calcium/magnesium). On the other hand, nutrient toxicities or osmotic interferences can also be traced to water quality. Water EC of even one millimho or below can cause problems. High EC readings of more than two millimhos can suggest serious problems, and special cultural procedures may be required.

EC AND SOIL SALINITY

“Water, water, everywhere, but not a drop to drink” is an old saying that applies to your plants when the soil salinity becomes too high. Salts from irrigation water and fertilizers tend to accumulate in your soil or growing media. High soil salinity disrupts the normal osmotic balance in plant roots. In severe cases a plant will become dehydrated even when the soil is wet. Symptoms of high soil salinity include: leaf chlorosis and necrosis, leaf drop, root death, nutrient deficiency symptoms, and wilting. All too often these symptoms are not recognized as being caused by soluble salts in the growing media. Sampling your soil and testing the EC of an extract can reveal important information about a soil’s suitability and your crop’s health.

Samples should be representative of different depths and locations. An easy-to-perform extract method is available with a Soil Test Kit. A 2:1 or 5:1 water-to-soil ratio is made using the small vials provided. Soil test labs often use a method that calls for testing the EC of an extract from a thicker slurry. Therefore, you may see higher soil EC readings from a lab. It is important to standardize your sampling, extract, and testing methods. This will keep the difference between lab and field testing to a predictable factor.

EC AND FERTILIZER CONCENTRATION

You know how important fertilizer is to your plants, but do you know how accurate your fertilizer dosage is? Relying on traditional proportional methods is risky to plants and can waste expensive fertilizer. Improperly mixed fertilizer or a malfunctioning injector can lead to less than optimal results or even a disastrous loss of crops. Many fertilizer companies now recommend using a simple EC test to verify correct fertilizer concentrations. Many growers check their fertilizer injectors on a weekly basis, or they use a continuous EC monitor.

Fertilizer companies and suppliers often can provide a chart relating EC to parts per million concentrations of their various fertilizers. If one is not available for the fertilizer you use, carefully make some stock solutions at commonly used strengths and test their EC. This will give you a data base for future reference.

To test the EC of fertilizer solutions:

  1. Test and record the EC of the water to be mixed with the fertilizer.
  2. Test the conductivity of the fertilizer and water mixture.
  3. Subtract the water conductivity determined in #1 above.
  4. The resulting figure is an accurate indication of how much fertilizer is present (a higher conductivity means more fertilizer).

Important note: Interpretation of results differs from formula to formula and even among manufacturers of the same formula. Obtain the proper EC charts from the fertilizer company.

Myron L Meters sells both portable and inline instrumentation to make your fertilizer monitoring easy. Myron L AGRI-METERS™, AG-5 and AG6/PH, TH1, waterproof TECHPRO II™ models TP1, TPH1 and TH1, and waterproof ULTRAMETER II™ models 4P and 6PFCEare handheld instruments which make fertilizer testing as simple as filling a cup and pushing a button.

The Myron L 750 Series II™ EC Monitor/controllers can be used to continuously monitor your fertilizer concentration. Their “alarm” relay circuit acts as a safeguard in a fertilizer injection system or even as the main controller for your injector. A 0-10 VDC output for chart recorders or PLC (SCADA) input is standard on all monitor/controller models.

IMPORTANCE OF pH

pH, the measure of acidity or basicity, should be included in any soil or water test. It is well documented that growing media pH is critical to successful plant growth. This is especially true for new soilless mixes and hydroponics. pH affects the roots’ ability to absorb many plant nutrients. Examples include iron and manganese, which are insoluble at high pHs and toxic at low pHs. pH also directly affects the health of necessary micro-organisms in soil.

The effectiveness of pesticides and growth regulators can be severely limited by spray water pH that is either too low or too high.

ALKALINITY

It is important to note that testing the pH of irrigation water reveals only part of the story. Testing water alkalinity (bicarbonates and carbonates) is much more important than generally recognized. Alkalinity dictates how much influence the water’s pH will have on your soil and nutrient availability. In addition, alkalinity has a very great effect on the ease or difficulty of reducing the pH of water.

 

 

Categories : Application Advice, Case Studies & Application Stories

The Ultrameter II™ in Disaster Response: MyronLMeters.com

Posted by 29 Oct, 2013

TweetWhen disaster strikes, people are scared and disorganized. They need resources — safe water and proper sanitation — that aren’t easy to come by in the aftermath. Without the help of humanitarian organizations to provide assistance, large populations of survivors are subject to epidemics of cholera, diarrhea, meningitis, and other diseases as they struggle to […]

Ultrameter II 6P

Ultrameter II 6P

When disaster strikes, people are scared and disorganized. They need resources — safe water and proper sanitation — that aren’t easy to come by in the aftermath. Without the help of humanitarian organizations to provide assistance, large populations of survivors are subject to epidemics of cholera, diarrhea, meningitis, and other diseases as they struggle to meet these basic needs.

Qualified Help
Dr. Roddy Tempest, a leading designer and manufacturer of water purification systems has headed the efforts of public and private aid organizations, such as the United Nations and AmeriCares, in responding to people in crisis all over the world for over 15 years.

Dr. Tempest contributed his expertise and experience in such situ- ations as the aftermath of Hurricane Andrew in 1992, the Kosovar refugee crisis in the Balkans, the devastating earthquakes in Tur- key and the flood and mudslides that ravaged the coastal states of Venezuela in 1999. He has assisted in disaster relief efforts in Japan, Africa, Central America, and Taiwan, as well.

So when AmeriCares launched its water purification program for the inhabitants of Sri Lanka following the devastation of the tsunami on December 26, 2004, it turned to Dr. Tempest.

For this heroic effort, Dr. Tempest used two Ultrameter II 6P portable, handheld water testing instruments. Dr Tempest said the instruments gave him “a good, quick first-brush assessment of the possible water sources.”

The Ultrameter II reported and recorded instant precise measurements of Conductivity, Resistivity, TDS, ORP (REDOX), pH, and Temperature. But creating a livable situation for hundreds of thousands of displaced survivors wasn’t as easy as testing the water.

Water Doctor to the Rescue
From his offices in the United States, Dr. Tempest responded to the call for help by first reviewing satellite maps that showed the location of potential water sources in relation to groups of survivors, or Internally Displaced Persons (IDPs). He assessed the total situation of the potential water sources, trying at a glance to deter- mine possible contamination by flooding or infiltration of seawater. Upon his arrival in Sri Lanka, Dr. Tempest worked 24 hours a day to determine a suitable survival supply of water for the IDPs. As indicated in the World Health Organization’s Environmental Health in Emergencies and Disasters, the required water per person per day is 15 liters / 3.963 gallons.

Faced with this daunting task, Dr. Tempest surveyed the land via helicopter and fixed wing aircraft to record the extent of the damage, the location of IDPs, and the viability of potential water sources. Some of the photographs reveal the mammoth challenge he had ahead of him. Debris lay everywhere, indicating the likelihood of surface water and well contamination. Filtration was a must.

Dr. Tempest then combined satellite imagery, the photographs and sketches of water sources from his survey and a list of supplies to determine which water sources would be targeted for testing.

Following World Health Organization guidelines, Dr. Tempest considered as many potential water sources as possible, not just the most obvious ones. These included surface and groundwater near the groups of IDPs and tankered or bottled water brought in from a distance – though this would not be suitable for the long- term supply. The preferred source would have been groundwater, especially for the long-term.

Ultrameter II in Action
Dr. Tempest used the Ultrameter II 6P to screen these sources for their potential disinfection and filtering.
First, Dr. Tempest considered whether or not potential water sources could be protected from pollution and secured. Any potential source water had to be filterable and sanitizable. If the water was brackish, it would require a certain treatment method. If it was high in turbidity, then it would require another. If the pH needed adjusting, then yet another. If the source water was not easily treatable, then the source had to be discarded as an option and a better alternative found.

The Ultrameter II provided Dr. Tempest with fast, reliable, accurate initial information on whether or not to pursue further testing and treatment of a potential source. Dr. Tempest used a multiparameter approach and tested for Total Dissolved Solids (TDS), pH, ORP (REDOX), and temperature (recorded with every reading taken.) He also tested for turbidity and bacteria using other instrumentation.

Initially, Dr. Tempest used a measurement of the mineral salt concentration using TDS calibrated to a sodium chloride solution and TDS calibrated to a natural water standard.

Right away Dr. Tempest knew whether or not the water was too saline or saturated to be filtered  economically. If the TDS is too high, filtration systems that work by reverse osmosis can be overwhelmingly expensive to operate in a disaster area, especially considering electrical costs alone. At the very least, the systems become less efficient as the TDS increases and a burden in operation and maintenance costs. This is critical for the short-term disaster response, where Dr. Tempest has to get as much safe water to IDPs in as short amount of time as possible.

High TDS can also indicate an unacceptable level of specifically known inorganic contaminants caused by industrial pollution.
And though it is not a health consideration, high TDS water often has an unpleasant taste that deters people from using it. People may try to return to old wells or other sources of previously safe drinking water that have been contaminated in the disaster. The old source may be more trusted than one that tastes “polluted.” So even though TDS is a secondary water quality standard, it can profoundly impact whether or not the new source is acceptable.

Dr. Tempest also took instant electronic pH readings using the Ultrameter II. The pH directly affects the potential to disinfect the water. pH levels beyond 8 will require substantial increases in the amount of disinfectant required or the length of time the water must be disinfected before safe consumption. And at a pH beyond 9, a residual disinfectant is extremely difficult to maintain.

pH is also critical in the long-term disaster recovery planning. pH that is too low or too high affects water balance, as well, and can contribute to either corrosion or scaling of filtration and disinfection system components and plumbing. An electronic meter is the best choice in this application as compared to colored strips or solutions or other colorimetric methods that do not produce the accuracy required to consistently and correctly balance water and maintain proper disinfection levels. The more precisely the pH is maintained, the less costly safe water production is.

Dr. Tempest also took quick ORP (REDOX) measurements using the Ultrameter II. ORP (REDOX) is the oxidation reduction potential of the water and indicates the state of the water for gaining or losing electrons. Unlike pH, which measures the water’s ability to donate or receive hydrogen ions, ORP (REDOX) values reflect the presence of all oxidizing and reducing agents — not just acids and bases. Initially, the ORP (REDOX) value gave Dr. Tempest a rough idea of the organic load in the water. A reading of 650 mV or greater indicated good water quality that could effectively be sanitized by a minimal amount of free chlorine. A value like 250 mV indicated that the organic contaminants would significantly increase chlorine demand and thereby significantly increase operation and management costs.

ORP (REDOX) is not only a good first indicator about the viability of a water source, but it also is the best way of measuring the disinfectant present in the water after treatment has begun.

Putting It All Together
Using all of the results from these parameters and based on his knowledge of the location of IDPs in relation to potential water sources, Dr. Tempest decided which source would satisfy the needs of each specific location of groups of IDPs. Where possible, water treatment technology would be designed around the quality of the source waters tested where IDPs had gathered, since it was not practical to re-locate large groups of people to distant water sources. Unfortunately, in the case of the Tsunami in Sri Lanka, oftentimes the water closest to IDPs could not be filtered and relocation was necessary.

Dr. Tempest found after his first quick assessment of potential water sources that it was not practical to supply the IDPs in parts of the Batticoloa and Ampara Districts along the eastern coast, because the source water was too saline from seawater intrusion. With limited electricity, this
made the use of reverse osmosis or desalination equipment impractical.

He ended up settling on sites that were more inland, using source waters from man-made reservoirs. IDPs were then settled inland near the cleaner water source.

However, the water in the man-made reservoirs was heavily contaminated with toxic blue-green algae.

Dr. Tempest chose microfiltration and ultrafiltration water treatment systems in the eastern district locations, taking algae-infested water over the salt-saturated, so that treatment and operation costs would be significantly less. Dr. Tempest designed, built and commissioned 4 large transportable water treatment systems, each capable of producing over 500,000 liters/day.

Plans then continued to follow through with long-term water treatment using the Tempest Environmental Systems equipment for the Sri Lankan Ministry of Urban Development and Water Supply and their National Water Supply & Drain- age Board (NWSDB). The NWSDB has 14 Ultrameter II 6Ps in current use in Sri Lanka, which are providing continuing confidence checks to ensure system equipment remains up and running properly.

The Ultrameter II 6P is an excellent multiparameter water quality meter used by thousands of water treatment professionals. The instrument can test for pH, total dissolved solids, conductivity, resistivity, oxidation reduction potential, temperature, and has the capability of testing for free chlorine. This meter handles the job of SIX single parameter testers using one single water sample. Save 10% on the Ultrameter II 6P at MyronLMeters.com.

 

 

Categories : Case Studies & Application Stories

Myron L Meters for Hydroponics: MyronLMeters.com

Posted by 5 Sep, 2013

TweetFeatures • Handheld meters measure TDS and/or pH • Monitor measures TDS • All instruments are easy to operate and calibrate • High degree of accuracy • Immediate results • Kit comes with solutions required to calibrate • Temperature compensated readings TDS Monitoring The nutrient solution and its management are the foundation of a successful […]

Features

• Handheld meters measure TDS and/or pH
• Monitor measures TDS
• All instruments are easy to operate and calibrate
• High degree of accuracy
• Immediate results
• Kit comes with solutions required to calibrate
• Temperature compensated readings

TDS Monitoring

The nutrient solution and its management are the foundation of a successful hydroponics system. The function of a hydroponics nutrient solution is to supply the plant roots with water, oxygen and essential mineral elements in soluble form.

A test of the Total Dissolved Solids (TDS) using the DS Meter or pDS Meter or continuous monitoring with the HYDRO-STIK gives the grower accurate measurements of the concentration of nutrients in solution. If the concentration drops below the optimum level required to sustain and grow the plants, add more nutrient- rich solution until the desired concentration level is achieved. This prevents haphazard dosing and wasted solution, which minimizes costs to the grower.

pH Monitoring

pH of the nutrient solution is also critical to successful plant growth. All elements have a specific solubility pH range. This means that mineral elements dissolve and can become more concentrated in solution within certain pH ranges. Roots absorb only the dissolved nutrients, so this is critical to plant growth.
The TH1H and the pDS Meter quickly and easily measure pH.

Monitoring the addition of a pH balancing solution with the proper meter lets the grower precisely adjust the pH level.

Beyond affecting nutrient availability, extremely low or high pH can even damage or kill plants.

All Myron L TDS and pH meters give lab-accurate results in the field.

All Myron L meters use advanced Temperature Compensation (TC) circuitry and equations to give you the best TC correction available.

Ultrapen PT2 pH and Temperature Pen

Ultrapen PT2 pH and Temperature Pen

Ultrapen PT1 TDS Pen

Ultrapen PT1 TDS Pen

T6/pH TDS and pH Meter

T6/pH TDS and pH Meter

Techpro II - TPH1 TDS, pH, Conductivity, Temperature

Techpro II – TPH1 TDS, pH, Conductivity, Temperature

PSTK Soil Test Kit

PSTK Soil Test Kit

 

 

Categories : Application Advice

pH Sensor Technical Reference: MyronLMeters.com

Posted by 3 Sep, 2013

Tweet What is pH? Definition: pH is the negative logarithm of hydrogen ion activity in a solution. The Concentration ratio of hydrogen ions (H+) and hydroxyl ions (OH-) determine the pH value of a solution. Any hydrogen activity will produce a 59.16 mV/ pH unit across the glass membrane. The measurement is expressed on a […]

pH Sensor
What is pH?

Definition: pH is the negative logarithm of hydrogen ion activity in a solution.

The Concentration ratio of hydrogen ions (H+) and hydroxyl ions (OH-) determine the pH value of a solution. Any hydrogen activity will produce a 59.16 mV/ pH unit across the glass membrane. The measurement is expressed on a scale of 0.0 to 14.0. Water with a pH of 7 is considered neutral (H+ ions = 10-7 and OH-
ions =10-7). A solution is considered acidic when the hydrogen ions (H+) exceed the hydroxyl ions (OH-), and a solution is considered an alkaline (base) when the hydroxyl ions (OH-) exceed Hydrogen ions (H+).

How is pH measured?
A pH instrument consists of three main components, refer to Figure 1.

1. The pH measuring cell: Hydrogen sensitive glass is blown onto the end of an inert glass stem.
A silver wire, treated with silver chloride (Ag/AgCl) is sealed inside the glass (cell) with a solution of potassium chloride saturated with Silver chloride.

The measuring solution has a neutral pH level of 7 or 0 mV. A properly hydrated glass sensor will produce a “Gel Layer” on the inside and outside of the glass membrane. The “Gel Layer” enables hydrogen ions to develop an electrical potential
across the pH glass sensor; a millivolt signal varies with hydrogen ion activity on the glass membrane while submerged in the solution being tested.

1. The Reference cell: A silver wire treated with silver chloride (Ag/AgCl) is sealed inside an inert glass housing (cell) with a solution of potassium chloride saturated with silver chloride. The inert glass prevents hydrogen ion activity from test solutions to influence the reference cells constant millivolt signal. The combination of the reference electrode silver- silver chloride wire, and the saturated potassium chloride solution develops a constant 199-millivolt reference signal. The millivolt signal produced inside the reference electrode does not vary as long as the chloride concentration remains constant. The reference voltage is used as a baseline to compare variations or changes in the solution being tested. The reference cell is in contact with the test solution through a reference junction that is commonly made of porous Teflon®*‚ ceramic, or a wick type material called a Pelon strip. This junction completes the measuring circuit of the pH sensor.

2. Display meter: When the pH sensor is placed in a solution, the pH-measuring cell develops a millivolt signal that reflects the hydrogen ion activity of the test solution. A high impedance meter accurately measures the small millivolt changes and displays the results in pH units on either an analog meter or digital display.

Temperature considerations:
The pH glass membrane is sensitive to the temperatures of solutions being tested. Prolonged use and/or exposure to temperatures (above 35°C) will accelerate the aging, and increase chemical attack
to the glass membrane which will shorten the overall service life of the sensor.

ELEVATED TEMPERATURES WILL SHORTEN THE SERVICE LIFE OF A pH SENSOR.

Increase temperatures also decreases the impedance of the glass membrane. The decrease of the impedance affects the millivolt output of glass membrane.
Temperature changes close to neutral (pH 7) usually do not affect pH levels; however, when levels are
< pH 3 and > pH 11 a dramatic error may occur. This problem is resolved using a built in ATC (Automatic Temperature compensation) which uses a mathematical formula (Nernst equation) to correct pH errors due to temperature factors.

Other factors that affect the life of a sensor Because standard glass electrodes are manufactured using a silver/silver chloride electrode inserted into
a potassium chloride/silver chloride solution, the following list of solutions cause the reference solution to precipitate. If the following solutions are tested, it is recommended that the pH sensor well be thoroughly rinsed. The testing of these solutions will severely reduce the service life of the pH sensor.

1. Heavy metals – silver, iron, and lead
2. Proteins
3. Low ion solutions – distilled water
4. High sodium concentrates
5. Sulfides
6. Fluorides (In high concentrations or prolonged use)

Note: This is not a complete list of solutions that can cause the reference solution to precipitate.

Sodium ion error

As solutions approach, and exceed the pH level of 12.0 the high concentration of sodium ions interfere with the standard glass membrane and cause pH levels to be displayed lower than actual pH levels. If solutions being tested are normally high alkaline, (>12 pH) a probe manufactured with special glass may be required. The special glass may be used throughout the pH range of 0 to 14, but due to the high resistance nature of the glass it will significantly increase the overall time to analyze a sample. Constant use in solutions with pH levels higher than 12 will reduce the life of the probe.

Calibration

The break down of the pH sensor electrodes and the depletion, and/or saturation of the reference solution require your pH instrument to be re-calibrated. This should normally be performed twice a month, but depending on the actual use of the instrument it may be necessary to increase the intervals between calibrations.

Refer to your operations manual or to Myron L Meters video page for detailed instructions on your specific instrument calibration procedures. The calibration should be performed using at least two pH buffer standards. The initial calibration should use Myron L pH buffer solution 7. This will check and allow the instrument to be adjusted so its output reflects 0 millivolts, neutral, or pH 7. A second calibration using a standard solution that reflects the normal range of solutions being analyzed. If acidic solutions are normally tested, a pH buffer solution 4 should be used. If solutions to be tested are normally alkaline, a pH buffer solution 10 should be used. It is not necessary to calibrate your instrument over three standards (4, 7, and 10) unless during normal daily use of the instrument, the solutions being tested varies from low to high pH ranges. In
this case an increase of calibration intervals is also recommended.

How to maximize the life of your pH or pH/ORP sensor

Myron L uses a general-purpose glass pH sensor. This glass sensor may be used in most applications. To ensure maximum life of your Myron L pH test instruments, the following information should be considered whether you are a distributor or an end user. Most premature pH sensor failures can be prevented with a few maintenance procedures. The following procedures should be performed after using your Myron L meter, or if you plan to store your meter for an extended period of time.

1. The pH sensor well (fig 1) must be filled with
Myron L storage solution (preferred) or Myron L pH buffer 4, or tap water with table salt added and its protective cap (with foam insert) firmly installed.
Failure to do so will:
• Allow the glass membrane to dry out. A de- hydrated glass membrane will not produce the necessary “Gel layer” on the sensor surface, which is essential to allow the exchange of hydrogen ions (measure pH).
• Allow airborne contaminants to settle on the glass membrane surface. Once contaminants dry onto the surface of the glass membrane, it will inhibit the transfer of hydrogen ions. (See factory approved cleaning process below.)
• Allow the reference junction to dry out. The reference junction material is usually a wick or fiber type material that completes the electrical circuit between the reference electrode cell
and the solution being tested. Dehydration causes the reference solution to leach out of the electrode cavity, and form crystals in the junction. This is normally referred to as the “Bridging effect”.
Repeated dehydration of the pH or pH/ORP sensor will cause the instrument to have a slower response time, and be more difficult to calibrate. Dehydration will
significantly reduce the normal service life of the sensor.

2. Store spare pH or pH/ORP sensors in a refrigerator. “Do not Freeze”. Take proper precautions not to allow the temperature to fall below freezing. This
will cause the solution to expand and may damage the electrodes inside the sensor. Storage in a refrigerated environment will slow the evaporation of the storage solution, but not prevent evaporation. Always inspect and replace storage solution in spare sensor well on a regular basis.
Note: When using the Myron L storage solution, it is common for white crystal formations to form around the seal of the pH sensor well and protective cap; this is a normal occurrence as the solution evaporates. Never store the sensor in high purity water (distilled or de-ionized).
Approved factory cleaning process

Figure 1

Failure to do so will:
• Allow the glass membrane to dry out. A de- hydrated glass membrane will not produce the necessary “Gel layer” on the sensor surface, which is essential to allow the exchange of hydrogen ions (measure pH).
• Allow airborne contaminants to settle on the glass membrane surface. Once contaminants dry onto the surface of the glass membrane, it will inhibit the transfer of hydrogen ions. (See factory approved cleaning process below.)
• Allow the reference junction to dry out. The reference junction material is usually a wick or fiber type material that completes the electrical circuit between the reference electrode cell
and the solution being tested. Dehydration causes the reference solution to leach out of the electrode cavity, and form crystals in the junction. This is normally referred to as the “Bridging effect”.
Repeated dehydration of the pH or pH/ORP sensor will cause the instrument to have a slower response time, and be more difficult to calibrate. Dehydration will
significantly reduce the normal service life of the sensor.

2. Store spare pH or pH/ORP sensors in a refrigerator. “Do not Freeze”. Take proper precautions not to allow the temperature to fall below freezing. This
will cause the solution to expand and may damage the electrodes inside the sensor. Storage in a refrigerated environment will slow the evaporation of the storage solution, but not prevent evaporation. Always inspect and replace storage solution in spare sensor well on a regular basis.
Note: When using the Myron L storage solution, it is common for white crystal formations to form around the seal of the pH sensor well and protective cap; this is a normal occurrence as the solution evaporates. Never store the sensor in high purity water (distilled or de-ionized).

Approved factory cleaning process for the pH sensor
During normal use of your Myron L handheld pH or pH/ORP meter, you’ll have to clean your pH sensor bulb. The cleaning is necessary because of deposits left on the sensor from the test samples.
If you suspect your instrument is inaccurate, or the display value drifts, or the response is slow and sluggish, try the following.
Rinse the sensor well (three times) and fill with pH buffer 4 solution. If the pH continues to drift below the pH 4 level (i.e. 3, 2, or 1) repeat the test using pH buffer 10. If the pH level drifts beyond the pH level of 10 (i.e. 11, 12 etc.) follow the cleaning procedure outlined below.
If the pH levels of the buffer solutions 4 and 10 actually drift towards pH 7, this could mean that the pH sensor is damaged and needs to be replaced.

Caution: Wear proper eye protection and gloves during the cleaning procedure.

The following procedures may help clean and recover the pH or pH/ORP sensors.

NOTE: Not all pH or pH/ORP sensors can be recovered.
1. Fill the pH/ORP sensor well with 100% Isopropyl alcohol. If not available use additive- free rubbing alcohol (70%). This will remove any oils.
2. Allow the sensor to soak for 10 minutes.
3. Rinse with RO or DI water.
4. Rinse the sensor well (three times) and fill
with Myron L storage solution or Myron L pH buffer 4. Replace the protective cap and allow the sensor to recover overnight.
5. Re-calibrate the instrument according to the Myron L instruction manual that was provided with your instrument. If the instrument fails to calibrate properly, continue to the next step.

If the above procedure does not recover the pH sensor function, perform the following:
1. Fill the pH or pH/ORP sensor well with a hot salt solution 60°C (140°F) potassium chloride (KCI preferred) or hot tap water with table salt (NaCl). Allow the solution to cool.
2. Re-calibrate the instrument according to the Myron L instruction manual that was provided with your instrument. If the instrument fails to calibrate properly, the pH or pH/ORP sensor must be replaced.

Warranty
The manufacturer warrants the pH and pH/ORP sensor assemblies against manufacturer defects. Shelf life for most pH and ORP sensors is 12 months. Failure to maintain proper hydration of the glass pH sensors or the use of the instrument in any manner not described in the operation manual supplied with the instrument may shorten the life of the sensor.
*CAUTION: If you do not use your Myron L instrument on a regular basis or if you are a stocking distributor, the storage solution in the pH or pH/ORP sensor well will evaporate over time and must be replenished. To prevent premature pH glass sensor failure, the manufacturer suggests a preventative maintenance program. Failure to do so could void the factory warranty. The use of liquids containing high levels of solvents, such as acetone, xylene, and chlorinated hydrocarbons, or other harsh chemicals in your Myron L meter is not recommended. Doing so may damage the sensor.

Categories : Care and Maintenance, Technical Tips

The Ultrameter III 9PTKA: MyronLMeters.com

Posted by 12 Jun, 2013

Tweet Myron l Meters Ultrameter III 9PTKA from Myron L Meters

Myron l Meters Ultrameter III 9PTKA from Myron L Meters
Categories : Product Updates, Uncategorized

The Ultrameter II 6P: MyronLMeters.com

Posted by 12 Jun, 2013

Tweet Myron l Meters Ultrameter II 6p from Myron L Meters

Myron l Meters Ultrameter II 6p from Myron L Meters
Categories : Product Updates

Basics of Wastewater and Sewage Treatment – MyronLMeters.com

Posted by 10 Jun, 2013

TweetWastewater is treated in 3 phases: primary (solid removal), secondary (bacterial decomposition), and tertiary (extra filtration). fig. 1 Origins of Sewage Sewage is generated by residential and industrial establishments. It includes household waste liquid from toilets, baths, showers, kitchens, sinks, and so forth that is disposed of via sewers. In many areas, sewage also includes […]

Wastewater is treated in 3 phases: primary (solid removal), secondary (bacterial decomposition), and tertiary (extra filtration).

fig. 1

Origins of Sewage

Sewage is generated by residential and industrial establishments. It includes household waste liquid from toilets, baths, showers, kitchens, sinks, and so forth that is disposed of via sewers. In many areas, sewage also includes liquid waste from industry and commerce. The separation and draining of household waste into greywater and blackwater is becoming more common in the developed world. Greywater is water generated from domestic activities such as laundry, dishwashing, and bathing, and can be reused more readily. Blackwater comes from toilets and contains human waste.

Sewage may include stormwater runoff. Sewerage systems capable of handling storm water are known as combined sewer systems. This design was common when urban sewerage systems were first developed, in the late 19th and early 20th centuries.  Combined sewers require much larger and more expensive treatment facilities than sanitary sewers. Heavy volumes of storm runoff may overwhelm the sewage treatment system, causing a spill or overflow. Sanitary sewers are typically much smaller than combined sewers, and they are not designed to transport stormwater. Backups of raw sewage can occur if excessive infiltration/inflow (dilution by stormwater and/or groundwater) is allowed into a sanitary sewer system. Communities that have urbanized in the mid-20th century or later generally have built separate systems for sewage (sanitary sewers) and stormwater, because precipitation causes widely varying flows, reducing sewage treatment plant efficiency.

As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. (See urban runoff.)[5] Some jurisdictions require stormwater to receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for stormwater include retention basins, wetlands, buried vaults with various kinds of media filters, and vortex separators (to remove coarse solids).

Sewage treatment is done in three stages: primary, secondary and tertiary treatment (Figure 1).

Primary Treatment
In primary treatment, sewage is stored in a basin where solids (sludge) can settle to the bottom and oil and lighter substances can rise to the top. These layers are then removed and then the remaining liquid can be sent to secondary treatment. Sewage sludge is treated in a separate process called sludge digestion.

Secondary Treatment
Secondary treatment removes dissolved and suspended biological matter, often using microorganisms in a controlled environment. Most secondary treatment systems use aerobic bacteria, which consume the organic components of the sewage (sugar, fat, and so on). Some systems use fixed film systems, where the bacteria grow on filters, and the water passes through them. Suspended growth systems use “activated” sludge, where decomposing bacteria are mixed directly into the sewage. Because oxygen is critical to bacterial growth, the sewage is often mixed with air to facilitate decomposition.

Tertiary Treatment
Tertiary treatment (sometimes called “effluent polishing”) is used to further clean water when it is being discharged into a sensitive ecosystem. Several methods can be used to further disinfect sewage beyond primary and secondary treatment. Sand filtration, where water is passed through a sand filter, can be used to remove particulate matter. Wastewater may still have high levels of nutrients such as nitrogen and phosphorus. These can disrupt the nutrient balance of aquatic ecosystems and cause algae blooms and excessive weed growth. Phosphorus can be removed biologically in a process called enhanced biological phosphorus removal. In this process, specific bacteria, called polyphosphate accumulate organisms that store phosphate in their tissue. When the biomass accumulated in these bacteria is separated from the treated water, these biosolids have a high fertilizer value. Nitrogen can also be removed using nitrifying bacteria. Lagooning is another method for removing nutrients and waste from sewage. Water is stored in a lagoon and native plants, bacteria, algae, and small zooplankton filter nutrients and small particles from the water.

Sludge Digestion & Disposal
Sewage sludge scraped off the bottom of the settling tank during primary treatment is treated separately from wastewater. Sludge can be disposed of in several ways. First, it can be digested using bacteria; bacterial digestion can sometimes produce methane biogas, which can be used to generate electricity. Sludge can also be incinerated, or condensed, heated to disinfect it, and reused as fertilizer.

When a liquid sludge is produced, further treatment may be required to make it suitable for final disposal. Sewage sludge scraped off the bottom of the settling tank during primary treatment is treated separately from wastewater. Sludge can be disposed of in several ways. First, it can be digested using bacteria; bacterial digestion can sometimes produce methane biogas, which can be used to generate electricity. Sludge can also be incinerated, or condensed, heated to disinfect it, and reused as fertilizer.

Typically, sludges are thickened (dewatered) to reduce the volumes transported off-site for disposal. There is no process which completely eliminates the need to dispose of biosolids. There is, however, an additional step some cities are taking to superheat sludge and convert it into small pelletized granules that are high in nitrogen and other organic materials. In New York City, for example, several sewage treatment plants have dewatering facilities that use large centrifuges along with the addition of chemicals such as polymer to further remove liquid from the sludge. The removed fluid, called “centrate,” is typically reintroduced into the wastewater process. The product which is left is called “cake,” and that is picked up by companies which turn it into fertilizer pellets. This product is then sold to local farmers and turf farms as a soil amendment or fertilizer, reducing the amount of space required to dispose of sludge in landfills. Much sludge originating from commercial or industrial areas is contaminated with toxic materials that are released into the sewers from the industrial processes. Elevated concentrations of such materials may make the sludge unsuitable for agricultural use and it may then have to be incinerated or disposed of to landfill.

Notably, throughout the development of excreta, wastewater, wastewater sludge and biosolids management – from the least developed to the most developed countries – there are in­evitable public concerns about how best to manage this “waste” that is also a resource. Putting biosolids to their best uses in each local situation is the goal of most of the programs discussed in the following reports. That is the goal of many sanitation and water quality experts. But the general public has other goals: avoiding the waste and the odors it can produce.There is a natural aversion to fecal matter and anything associated with it. Conflicts arise when experts propose recycling this “waste,” usually in a treated and tested form commonly called “biosolids,” back to soils in communities.

Managing excreta and wastewater sludge to produce recyclable biosolids involves many technical challenges. But equally significant are these social, cultural, and political challenges. Funding is required to build infrastructure – and, around the world, the public is the source of funding, either through taxes or sewer usage fees. In order for proper sanitation to be built and operated, complex community sanitation agencies with support from state, provincial, and national governments are needed.

Wastewater quality indicators are laboratory tests to assess suitability of wastewater for disposal or re-use. Tests selected and desired test results vary with the intended use or discharge location. Tests measure physical, chemical, and biological characteristics of the wastewater.

Physical characteristics

Temperature
Aquatic organisms cannot survive outside of specific temperature ranges. Irrigation runoff and water cooling of power stations may elevate temperatures above the acceptable range for some species. Temperature may be measured with a calibrated thermometer.

Solids
Solid material in wastewater may be dissolved, suspended, or settleable. Total dissolved solids or TDS (sometimes called filtrable residue) is measured as the mass of residue remaining when a measured volume of filtered water is evaporated. The mass of dried solids remaining on the filter is called total suspended solids (TSS) or nonfiltrable residue. Settleable solids are measured as the visible volume accumulated at the bottom of an Imhoff cone after water has settled for one hour. Turbidity is a measure of the light scattering ability of suspended matter in the water. Salinity measures water density or conductivity changes caused by dissolved materials.

Chemical characteristics
Virtually any chemical may be found in water, but routine testing is commonly limited to a few chemical elements of unique significance.

Hydrogen
Water ionizes into hydronium (H3O) cations and hydroxyl (OH) anions. The concentration of ionized hydrogen (as protonated water) is expressed as pH.

Oxygen
Most aquatic habitats are occupied by fish or other animals requiring certain minimum dissolved oxygen concentrations to survive. Dissolved oxygen concentrations may be measured directly in wastewater, but the amount of oxygen potentially required by other chemicals in the wastewater is termed an oxygen demand. Dissolved or suspended oxidizable organic material in wastewater will be used as a food source. Finely divided material is readily available to microorganisms whose populations will increase to digest the amount of food available. Digestion of this food requires oxygen, so the oxygen content of the water will ultimately be decreased by the amount required to digest the dissolved or suspended food. Oxygen concentrations may fall below the minimum required by aquatic animals if the rate of oxygen utilization exceeds replacement by atmospheric oxygen.

The reaction for biochemical oxidation may be written as:
Oxidizable material + bacteria + nutrient + O2 → CO2 + H2O + oxidized inorganics such as NO3 or SO4
Oxygen consumption by reducing chemicals such as sulfides and nitrites is typified as follows:

S– + 2 O2 → SO4–
NO2- + ½ O2 → NO3-

Since all natural waterways contain bacteria and nutrient, almost any waste compounds introduced into such waterways will initiate biochemical reactions (such as shown above). Those biochemical reactions create what is measured in the laboratory as the biochemical oxygen demand (BOD).

Oxidizable chemicals (such as reducing chemicals) introduced into a natural water will similarly initiate chemical reactions (such as shown above). Those chemical reactions create what is measured in the laboratory as the chemical oxygen demand (COD).

Both the BOD and COD tests are a measure of the relative oxygen-depletion effect of a waste contaminant. Both have been widely adopted as a measure of pollution effect. The BOD test measures the oxygen demand of biodegradable pollutants whereas the COD test measures the oxygen demand of biogradable pollutants plus the oxygen demand of non-biodegradable oxidizable pollutants.

The so-called 5-day BOD measures the amount of oxygen consumed by biochemical oxidation of waste contaminants in a 5-day period. The total amount of oxygen consumed when the biochemical reaction is allowed to proceed to completion is called the Ultimate BOD. The Ultimate BOD is too time consuming, so the 5-day BOD has almost universally been adopted as a measure of relative pollution effect.
There are also many different COD tests. Perhaps, the most common is the 4-hour COD.

There is no generalized correlation between the 5-day BOD and the Ultimate BOD. Likewise, there is no generalized correlation between BOD and COD. It is possible to develop such correlations for a specific waste contaminant in a specific wastewater stream, but such correlations cannot be generalized for use with any other waste contaminants or wastewater streams.

The laboratory test procedures for the determining the above oxygen demands are detailed in the following sections of the “Standard Methods For the Examination Of Water and Wastewater” available at www.standardmethods.org:

5-day BOD and Ultimate BOD: Sections 5210B and 5210C
COD: Section 5220

Nitrogen
Nitrogen is an important nutrient for plant and animal growth. Atmospheric nitrogen is less biologically available than dissolved nitrogen in the form of ammonia and nitrates. Availability of dissolved nitrogen may contribute to algal blooms. Ammonia and organic forms of nitrogen are often measured as Total Kjeldahl Nitrogen, and analysis for inorganic forms of nitrogen may be performed for more accurate estimates of total nitrogen content.

Chlorine
Chlorine has been widely used for bleaching, as a disinfectant, and for biofouling prevention in water cooling systems. Remaining concentrations of oxidizing hypochlorous acid and hypochlorite ions may be measured as chlorine residual to estimate effectiveness of disinfection or to demonstrate safety for discharge to aquatic ecosystems.

Biological characteristics
Water may be tested by a bioassay comparing survival of an aquatic test species in the wastewater in comparison to water from some other source. Water may also be evaluated to determine the approximate biological population of the wastewater. Pathogenic micro-organisms using water as a means of moving from one host to another may be present in sewage. Coliform index measures the population of an organism commonly found in the intestines of warm-blooded animals as an indicator of the possible presence of other intestinal pathogens.

Myron L Meters is the premier online retailer of the Myron L meters preferred by water professionals, like the Ultrameter III 9PTKA.

Information shared via Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0), original material found here:

https://www.boundless.com/microbiology/industrial-microbiology/wastewater-treatment-and-water-purification/wastewater-and-sewage-treatment/

https://en.wikipedia.org/wiki/Sewage_treatment

http://www.iwawaterwiki.org/xwiki/bin/view/Articles/GLOBALATLASOFEXCRETAWASTEWATERSLUDGEANDBIOSOLIDSMANAGEMENTMOVINGFORWARDTHESUSTAINABLEANDWELCOMEUSESOFAGLOBALRESOURCE

 

Categories : Case Studies & Application Stories, Science and Industry Updates

Electrical Conductivity Testing Applied to the Assessment of Freshly Collected Kielmeyera coriacea Mart. Seeds: MyronLMeters.com

Posted by 4 Jun, 2013

Tweet  MyronLMeters.com brings you the latest in conductivity measurement research like the article below.  Please click here for accurate, reliable, conductivity meters. Abstract Assessment of seed vigor has long been an important tool of seed quality control programs. The conductivity test is a promising method for assessment of seed vigor, but proper protocols for its […]

 

MyronLMeters.com brings you the latest in conductivity measurement research like the article below.  Please click here for accurate, reliable, conductivity meters.

Abstract

Assessment of seed vigor has long been an important tool of seed quality control programs. The conductivity test is a promising method for assessment of seed vigor, but proper protocols for its execution have yet to be established. The objective of this study was to assess the efficiency of electrical conductivity (EC) testing as a means of assessing the viability of freshly collected Kielmeyera Coriacea Mart. seeds. The test was performed on individual seeds rather than in a bulk configuration. Seeds were soaked for different periods (30 min, 90 min, 120 min., 180 min, and 240 min) at a constant temperature of 25°C. Conductivity was then measured with a benchtop EC meter.

1. Introduction

Seeds are the primary factor of the seedling production process, despite their minor contribution to the end cost of each seedling. In order to estimate the success rate of seedling production, it is essential that seed characteristics such as vigor and germinability be known [1].

The importance of knowing the characteristics of Brazilian forest species to safer and more objective management of seedling production cannot be overstated. However, such studies are scarce, particularly in light of the vast number of species with this potential [2]. Given the intensity of anthropogenic pressure and the importance of rehabilitating disrupted or degraded environments, in-depth research of forest species is warranted.

Routine methods used for determination of seed quality and viability include germination testing and the tetrazolium test. Methods such as measurement of soak solution pH, electrical conductivity, and potassium content of leachate, all based on the permeability of the cell membrane system, are increasingly being employed in the assessment of seed vigor, as they are reliable and fast and can thus speed the decision making process.

Electrical conductivity testing, as applied to forest seeds, has yet to be standardized. Studies conducted thus far have focused on assessment of seed soaking times, which may range from 4 to 48 hours. Even at 48 hours, the conductivity test is considered a rapid technique as compared to the germination test, which, despite its status as a widespread and firmly established method, can take anywhere from 30 to 360 days to yield results (depending on species), and is limited by factors such as dormant seeds.

The total concentration of electrolytes leached by seeds during soaking has long been assessed indirectly, mostly through the conductivity test, which takes advantage of the fact that inorganic ions make up a substantial portion of these electrolytes [3–5].

Rapid assessment of seed quality allows for preemptive decision-making during harvest, processing, sale and storage operations, thus optimizing use of financial resources throughout these processes.

K. coriacea Mart. is a species of the Clusiaceae (Guttiferae) family popularly known in Brazil as pau-santo (Portuguese for “holy wood”), due to its properties as a medicinal and melliferous plant and as a source of cork. In traditional Brazilian medicine, the leaves are used as an emollient and antitumor agent, and the resin as a tonic and in the treatment of toothache and various infections. The fruits are used in regional crafts and flower arrangements. Even if the dye is of the leaves and bark. The trunk provides cork [6].

K. coriaceae specimens grow to approximately 4 meters in height. The flowering period extends from January to April and the fruiting period from May to September, and seed collection can take place from September onwards. Leaves are alternate, simple, oval to elliptical, coriaceous, and clustered at the end of the branches, and feature highly visible, pink midribs. A white to off-white latex is secreted in small amounts upon removal of leaves. Flowers are white to pale pink in color, large, fragrant, with many yellow stamens and are borne in short clusters near the apex of the branches. Seedling production requires that seeds be sown shortly after collection.

In the fruit are found 60 to 80 seeds with anemochoric. The seed varies from round to oblong, winged at the ends, light brown color, has integument thin and fragile, with smooth texture, the sizes range from 4.3 to 5.6 cm long, 1.3 to 1.9 cm wide, and 0.2 to 0.5 centimeter thick. The individual weight of the seeds ranges from. 112 to.128 grams. Nursery radicle emission occurred at 7 days and the germination rate was 90%. Germination occurs within 7 to 10 days. The species is slow growing, both in the field and in a nursery setting [7].

The present study sought to assess the applicability of the conductivity test to freshly collected K. coriacea Mart. seeds by determining the optimal soak time for performance of the test and comparing results obtained with this method against those obtained by tetrazolium and germination testing of seeds from the same batch.

2. Materials and Methods

2.1. Seed Collection

Seeds were collected in the cerrado sensu stricto, in SCA (Clean Water Farm), area of study at the University of Brasília (UNB) in August 2010, matrixes marked with the aid of GPS, after the period of physiological maturation of the seeds. The collection of fruits was directly from the tree, with the help of trimmer, then the seeds were processed and stored in paper bags at room temperature in the laboratory.

2.2. Conductivity Test

The development of tests to evaluate the physiological quality of seeds, as well as the standardization of these is essential for the establishment of an efficient quality control [8]. One of the main requirements for the seed vigor refers to obtain reliable results in a relatively short period of time, allowing the speed of decision making especially as regards the operations of collection, processing, and marketing [9]. The literature indicates that rapid tests are most studied early events related to the deterioration of the sequence proposed by Delouche and Baskin [10] as the degradation of cell membranes and reduced activity, and biosynthetic respiratory [9]. The measurement of electrical conductivity through the electrolyte amount released by soaking seeds in water has been applied by the individual method where each seed is a sample or more often, a sample of seed representative of a population (mass method). For this case, the results represent the average conductivity of a group of seeds, may a small amount of dead seeds affect the conductivity of a batch with many high-quality seed generating a read underestimated. To minimize this problem, we recommend choosing the seeds, excluding the damaged seeds.

The electrical conductivity is based on the principle that the deterioration process is the leaching of the cells of seeds soaked in water due to loss of integrity of cellular systems. Thus, low conductivity means a high-quality seed and high conductivity, that is, greater output seed leachate, suggests that less force [11].

The electrical conductivity is not yet widely used in Brazil, its use is restricted to activities related to research (Krzyzanowski et al., 1991). There are common jobs using this test to determine the physiological quality of tree seeds. However, it is a promising vigor test for possible standardization of the methodology, at least within a species. However, it is a promising vigor test for possible standardization of the methodology, at least within a species. However, there are factors which influence the conductivity values as the size, the initial water content, temperature and time of soaking, the number of seeds per sample, and genotype [12].

Five treatments were carried out to test the efficiency of the conductivity test as a means of evaluating the viability of freshly collected K. coriacea Mart. seeds.

Five runs of 20 seeds were tested for each treatment. Seeds were individually placed into containers holding 50 mL of distilled water and left to soak for 30, 90, 120, 180, and 240 minutes in a germination chamber set to a constant temperature of 25°C. The minimum time taken for the soaking of 30 minutes was adopted by the same authors and Amaral and peske [13], Fernandes et al. [14], and Matos [1] who concluded that the period of 30 minutes of soaking is more effective to estimate the germination of the seeds. After each period, the conductivity of the soak solution was immediately tested with a benchtop EC meter precise to +/−1% (Quimis). Readings were expressed as μS·cm−1/g−1 seed [15].

Data thus obtained were subjected to analysis of variance with partitioning into orthogonal polynomials for analysis of the effect of soaking times on electrical conductivity.

2.3. Tetrazolium Test

The tetrazolium test, also known as biochemical test for vitality, is a technique used to estimate the viability and seed germination. A fundamental condition for ensuring the efficiency of the test is the direct contact of the tetrazolium solution with the tissues of the seed to be tested. Due to the impermeability of the coats of most forest tree seeds, it is necessary to adopt a previous preparation of the seeds that were tested. This preparation is based on facilitating entry of the solution in the seed. Among the preparations that precede the test we have cutting the seed coat, seed coat removal, scarification by sandpaper scarification by soaking in hot water and water [16]. In the previous preparation of the seeds, factors such as concentration of the solution or even the time of the staining solution can affect the efficiency of the test in the evaluation of seed quality. The time required for the development of appropriate color according to the Rules for Seed Analysis [16] varies depending on each species, can be between 30 and 240 minutes.

The tetrazolium test has been widely used in seeds of various species due to the speed and efficiency in the characterization of the viability and vigor, and the possibility of damage to the same distinction, assisting in the process of quality control from the steps of harvest storage (GRIS et al, 2007).

The tetrazolium test was also applied to freshly collected K. coriacea Mart. seeds, for a total of three runs and 20 seeds. Seeds were soaked in a 0.5% solution of 2,3,5-triphenyl-2H-tetrazolium for 24 hours in a germination chamber set to a constant temperature of 25°C. After each run, seeds were washed, bisected, and the half-containing the embryonic axis placed under a stereo viewer for examination of staining patterns [17].

2.4. Germination Test

The standard germination test is the official procedure to evaluate the ability of seeds to produce normal seedlings under favorable conditions in the field, but does not always reveal differences in quality and performance among seed lots, which can manifest in storage or in the field [18].

During the germination test optimum conditions are provided and controlled for seeds to encourage the resumption of metabolic activity which will result in the seedlings. The main objective of the germination test is the information about the quality of seeds, which is used in the identification of lots for storage and sowing [19].

Freshly collected K. coriacea Mart. seeds were placed in a germination chamber at a constant temperature of 25°C (Treatment 1) or an alternating temperature of 20–30°C (Treatment 2), on a standard cycle of 8 hours of light and 16 hours of dark. Each test consisted of five runs and was performed on 20 seeds.

Germination was defined as emergence of at least 2.0 mm of the primary root [20]. Assessment was conducted daily, and emergence was observed between day 6 and day 7. At the end of the 14-day test period, the germination percentage was calculated on the basis of radicle emergence [21].

Capture

3. Results

3.1. Conductivity Test

Different soaking times were not associated with any significant differences in conductivity results in K. coriacea Mart. seeds (Table 1).

Table 1: Conductivity ranges of freshly collected Kielmeyera coriacea Mart. seeds after soaking for different periods.
Seeds with a leachate conductivity range of 7–17.99 μS·cm·g were considered nonviable, confirming the hypothesis behind conductivity testing, which is the nonviable seeds that have higher soaking solution conductivity values (Table 2).

Table 2: Percentage of viable Kielmeyera coriacea Mart. seeds according to EC range.
Analysis of variance revealed a low coefficient of variation (20.26%), which suggests good experimental control (Table 3).

Table 3: Analysis of variance of various soaking times for electrical conductivity testing of Kielmeyera coriacea Mart. seeds.
After analysis of variance, the correlation between the soaking time and electrical conductivity variables was assessed. The cubic model yielded

Capture

which is indicative of a positive correlation between the study variables.

The following equation was obtained on the basis of the cubic model:

Capture

 

Analysis of a plot of the above function in the GeoGebra 2007 software package shows that variation in electrical conductivity as a function of soaking time is minor and approaches a constant, which is consistent with the study results, in which changes in soaking time had no influence on conductivity (Figure 1).

378139.fig.001
Figure 1: Leachate conductivity as a function of soaking time in Kielmeyera coriaceaMart. seeds.

Matos [1] reported that a 30-minute soak was enough for assessment of Anadenanthera falcata, Copaifera langsdorffii, and Enterolobium contortisiliquum seeds by the soaking solution pH method—that is, the amount of matter leached after this period sufficed for measurement.

Although the principle of conductivity is the same used for the test pH of exudate, the soaking time needed to analyze the differential seeds through the conductivity may be explained by the fact that this technique is quantitative, while pH in the art exudate analyzes are qualitative. In other words to the technique of pH values of the exudate it is important to detect the acidity of imbibition while on the electrical conductivity we draw a comparison between the analyzed values to separate viable from nonviable samples. To determine a value of electrical conductivity as a reference to determine viable seeds are to be considered the values obtained for fresh seeds and seeds stored.

The thickness of the K. coriacea Mart. seed coat may also have affected the soaking procedure; this species has very thin seed coats, which makes soaking a very fast process.

These results are consistent with those reported by Rodrigues [22], who subjected stored K. coriaceaMart. seeds to the conductivity test and found that 90 minutes is an appropriate soaking time for analysis.

Therefore, it can be inferred that for seed Kielmeyera coriacea Mart. the soaking time of 90 minutes can be applied to obtain satisfactory results.

3.2. Tetrazolium Test

Table 4 shows the results of tetrazolium testing of K. coriacea Mart. seeds in our sample. The mean viability rate was 96.6%. The testing procedure was based on Brazilian Ministry of Agriculture recommendations [17].

tab4
Table 4: Tetrazolium testing of Kielmeyera coriacea Mart. seeds.

The results of the tetrazolium test were quite similar to those obtained with the conductivity method, thus confirming the efficiency of the latter method as a means for assessing the viability of K. coriaceaMart. seeds.

3.3. Germination Test

The germination test results of freshly collected K. coriacea Mart. seeds are shown in Table 5. Regardless of temperature, both test batches exhibited good viability, and no seed dormancy was detected.

tab5
Table 5: Germination test results of Kielmeyera coriacea Mart. seeds.

Radicle emergence was observed between day 7 and day 9 of the test, according to the analysis criteria proposed by Labouriau [21].

These findings are consistent with those of Melo et al., [23] who reported high and relatively rapid germination rates for K. coriacea seeds kept at 25°C on paper towels, with emergence of a perfect radicle on the 7th day of assessment.

4. Conclusions

The electrical conductivity can be used as an indicator of seed viability and presents two advantages: to provide rapid and reliable results and the technique is not destructive and can use the seeds after the conductivity test, so they can be used to produce seedlings.

The present study showed that different soaking times had no effect on the results of conductivity testing of freshly collected K. coriacea Mart. seeds, suggesting that the amount of leached matter was never below the threshold required for adequate testing.

Electrical conductivity testing proved to be a feasible option for viability testing of K. coriacea Mart. seeds, as the results obtained with conductivity testing were confirmed by germination testing and by the tetrazolium test.

References

  1. J. M. M. Matos, Evaluation of pH test on exudate check feasibility of forest seeds, dissertation, University of Brasília, Brasília, Brazil, 2009.
  2. F. Poggiani, S. Bruni, and E. S. Q. Barbos, “Effect of shading on seedling growth of three species forest,” in National conference on native plants, vol. 2, pp. 564–569, Institute of Forestry, 1992.
  3. M. B. Mcdonald Jr. and D. O. Wilson, “ASA-610 ability to detect changes in soybean seed quality,” Journal of Seed Technology, vol. 5, no. 1, pp. 56–66, 1980.
  4. S. Matthews and A. Powell, “A eletrical conductivity test,” in Handbook of Vigor Test Methods, D. A. Perry, Ed., pp. 37–42, International Seed Testing Associaty, Zurich, Switzerland, 1981.
  5. J. Son Mark, W. R. Singh, A. D. C. Novembre, and H. M. C. P. Chamma, “Comparative studies to evaluate dem’etodos physiological quality of soybean seeds, with emphasis the electrical conductivity test,” Brazilian Journal of Agricultural Research, vol. 25, no. 12, pp. 1805–1815, 1990.
  6. S. R. Singh, A. P. Silva, C. B. Munhoz, et al., Guide of Cerrado Plants Used in the Chapada Veadeiros, WWF-Brazil, Brasilia, Brazil, 2001.
  7. J. M. Felfili, C. W. Fagg, J. C. S. Silva, et al., Plants of the APA Gama Cabeça de Veado: Species, ecosystems and recovery, University of Brasilia, Brasília, Department of Engineering Forest, Brasília, Brazil, 2002.
  8. M. F. B. Muniz, et al., “Comparison of methods for evaluating the physiological and health quality of melon seeds,” Journal of Seeds, Pellets, vol. 26, no. 2, pp. 144–149, 2004.
  9. D. C. F. S. Dias and J. Marcos Filho, “Electrical conductivity to assess seed vigor of soybean (Glycine max (L.) Merrill),” Scientia Agricola, vol. 53, no. 1, Article ID article id, pp. 31–42, 1996.View at Publisher · View at Google Scholar
  10. J. C. Delouche and C. C. Baskin, “Acelerated aging techniques for predicting the relative storability of seed lots,” Seed Science and Technology, vol. 1, no. 2, pp. 427–452, 1973.
  11. R. D. Vieira and F. C. Krzyzanowski, “Electrical conductivity test,” in Seed Vigor: Concepts and Tests, F. C. Krzyzanowski, R. D. Vieira, and J. B. França Neto, Eds., pp. 4.1–4.26, Abrates, London, UK, 1999.
  12. R. D. Vieira, “Electrical conductivity test,” in Seed Vigor Tests, R. D. Vieira and N. M. Carvalho, Eds., p. 103, FUNEP, Jaboticabal, Brazil, 1994.
  13. A. S. Amaral and S. T. Peske, “Exudate pH to estimate, in 30 minutes seed viability of soybeans,”Journal of seeds, vol. 6, no. 3, pp. 85–92, 1984.
  14. E. J. Fernandes, R. Sader, and N. M. Carvalho, “seed viability beans (Phaseolus vulgaris L.) estimated by the pH of the exudate,” in Congress Brazil’s Seeds, Gramado, Brazil, 1987.
  15. F. C. Krzyzanowski and R. D. Vieira, “Electrical conductivity test,” in Seed Vigor: Concepts and Tests, F. C. Krzyzanowski, R. D. Vieira, and J. B. France Neto, Eds., pp. 4.1–4.26, Abrates, London, UK, 1999.
  16. Ministry of Agriculture, Livestock and Supply, Rule for seed testing, SNPA/DNPV/CLAV, Brasilia, Brazil, 1992.
  17. Ministry of Agriculture, Livestock and Supply, Rule for seed testing, SNPA/DNPV/CLAV, Brasilia, Brazil, 2009.
  18. N. M. Carvalho and J. Nakagawa, Seeds: Science, Technology and Production, FUNEP, Jaboticabal, Brazil, 2000.
  19. Pina-Rodrigues, et al., “Quality test,” in Germination from Basic to Applied, A. Ferreira and G. F. Borghetti, Eds., pp. 283–297, 2004.
  20. A. G. Ferreira and F. Borghetti, from basic to Germination applied, Artmed, Porto Alegre, Brazil, 2004.
  21. L. G. Labouriau, seed germination, OAS, Washington, DC, USA, 1983.
  22. L. L. Rodrigues, Study of imbibition time for application the method of electrical conductivity in the verification of the feasibility forest seeds stored, monograph, University of Brasília, Brasília, Brazil, 2010.
  23. J. T. Melo, J. F. Ribeiro, and V. L. G. F. Lima, “Germination of Seeds of some tree species native to the Cerrado,” Journal of Seeds, vol. 1, no. 2, pp. 8–12, 1979.

Research article by: Kennya Mara Oliveira Ramos,1 Juliana M. M. Matos,1 Rosana C. C. Martins,1 and Ildeu S. Martins2

1Seed Technology Laboratory of Forestry, Department of Forestry, University of Brasilia, CP 04357, 70919970 Campus Asa Norte, DF, Brazil
2Department of Forestry, University of Brasilia, CP 04357, 70919970 Campus Asa Norte, DF, Brazil

Received 17 December 2011; Accepted 14 February 2012

Academic Editors: A. Berville, C. Gisbert, J. Hatfield, and Y. Ito

Copyright © 2012 Kennya Mara Oliveira Ramos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Categories : Case Studies & Application Stories, Science and Industry Updates

Peat Water Treatment Using Combination of Cationic Surfactant Modified Zeolite, Granular Activated Carbon, and Limestone

Posted by 17 Apr, 2013

Tweet MyronLMeters.com attempts to provide its customers with the latest in water quality research and industry updates. Find more at https://www.myronlmeters.com/. Abstract This research was conducted essentially to treat fresh peat water using a series of adsorbents. Initially, the characterization of peat water was determined and five parameters, including pH, colour, COD, turbidity, and iron ion […]

MyronLMeters.com attempts to provide its customers with the latest in water quality research and industry updates. Find more at https://www.myronlmeters.com/.

Abstract

This research was conducted essentially to treat fresh peat water using a series of adsorbents. Initially, the characterization of peat water was determined and five parameters, including pH, colour, COD, turbidity, and iron ion exhibited values that exceeded the water standard limit. There were two factors influencing the adsorption capacity such as pH, and adsorbent dosages that were observed in the batch study. The results obtained indicated that the majority of the adsorbents were very efficient in removing colour, COD, turbidity at pH range 2-4 and Fe at pH range 6-8. The optimum dosage of cationic surfactant modified zeolite (CSMZ) was found around 2 g while granular activated carbon (GAC) was exhibited at 2.5 g. In column study, serial sequence of CSMZ, GAC, and limestone showed that the optimal reduction on the 48 hours treatment were found pH = 7.78, colour = 12 TCU, turbidity = 0.23 NTU, COD = 0 mg/L, and Fe= 0.11 mg/L. Freundlich isotherm model was obtained for the best description on the adsorption mechanisms of all adsorbents.

Keywords: cationic surfactant modified zeolite, granular activated carbon, limestone, peat water

1.  Introduction

Water is essential and fundamental to all living forms and is spread over 70.9% of the earth’s surface. However, only 3% of the earth’s water is found as freshwater, of which 97% is in ice caps, glaciers and ground water (Bhatmagar & Minocha, 2006). In Malaysia, more than 90% of fresh water supply comes from rivers and streams. The demand for residential and industrial water supply has grown rapidly coupled with an increase in population and urban growth (WWF Malaysia, 2004). Water demand in affected populations such as rural areas also demands that attention is paid to providing more sustainable solutions rather than transporting bottled water (Loo et al., 2012). For this reason, it is essential to ensure availability of local sources of water supply and even develop new potential sources of water such as from peat swamp forest to overcome future water shortages.

River water surrounded by peat swamp forest is defined as peat water and is commonly available as freshwater since it has a low concentration of salinity. The previous study shows that peat swamp forest has high levels of acidity and organic material depending on its region and vegetation types (Huling et al., 2001). Under natural conditions, tropical peat lands serve as reservoirs of fresh water, moderate water levels, reduce storm-flow and maintain river flows, even in the dry season, and they buffer against saltwater intrusion (Wosten et al., 2008).

Due to the acidity and high concentration of organic material, selective treatment of peat water must be conducted prior to its use as water supply. Recently, many methods have been designed and have proven their effectiveness in treating raw water such as coagulation and flocculation (Franceschi et al., 2002; Liu et al., 2011; Syafalni et al., 2012a), absorption (Ćurković et al., 1997), filtration (Paune et al., 1998) and combining (Hidaka et al., 2003). Careful consideration of the most suitable method is important to ensure that the adsorption process is the most beneficial, economically feasible method as well as easy to operate for producing high quality of water in a particular location.

Many researchers have shown that activated carbon is an effective adsorbent for treating water with high concentrations of organic compounds (Eltekova et al., 2000; Syafalni et al., 2012b). Its usefulness derives mainly from its large micropore and mesopore volumes and the resulting high surface area (Fu & Wang, 2011). However, its high initial cost makes it less economically viable as an adsorbent. Low cost adsorbent such as zeolite nowadays has been explored for its ability in many fields especially in water treatment. Natural zeolite has negative surface charge which gives advantages in absorbing unwanted positive ions in water such heavy metal. These ions and water molecules can move within the large cavities allowing ionic exchange and reversible rehydration (Jamil et al., 2010). The effectiveness of zeolite has been improvised by modified zeolite with surfactant in order to achieve higher performance in removing organic matter (Li & Bowman, 2001). Among tested cationic surfactants, hexa-decyl-tri-methyl ammonium (HDTMA) ions adsorbed onto adsorbent surfaces are particularly useful for altering the surface charge from negative to positive (Chao & Chen, 2012). Surfactant modified zeolite has been shown to be an effective adsorbent for multiple types of contaminants (Zhaohu et al., 1999).

Zeolite is modified to improve its capability of exchanging the anion by cationic surfactants, called CSMZ. CSMZ adsorbs all major classes of water contaminants (anions, cations, organics and pathogens), thus making it reliable for a variety of water treatment applications (Bowman, 2003). Nowadays, interest in the adsorption of anions and neutral molecules by surfactant modified zeolite has increased (Zhang et al., 2002). Modification of zeolite by surfactant is commonly done by cationic or amphoteric surfactants. By introducing surfactant to the zeolite, an organic layer is developed on the external surfaces and the charge is reversed to positive (Li et al., 1998). However, the present study used zeolite that had been modified using Uniquat (QAC-50) as cationic surfactant (CSMZ) and their performance towards the removal of color, COD, turbidity and iron ion from peat water were investigated.

2. Materials

Four adsorbents were used in these experiments which are natural zeolite, zeolite modified by cationic surfactant, activated carbon and limestone. All adsorbents were prepared with equivalent sizes of 1.18 mm – 2.00 mm. Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used for polishing zeolite during the preparation phase and for pH adjustment of the sample. Furthermore, potassium dichromate (K2CrO7), silver sulphate (Ag2SO4), sulphuric acid (H2SO4) and mercury (II) sulphate (HgSO4) were used as digestion solution reagents and acid reagents for COD analysis. Lastly, Uniquat (QAC-50) was used as cationic surfactant to modify the zeolite.

2.1  Preparation of Surfactant Modified Zeolite

In these studies, 100 g of prewashed natural zeolite was contacted with 5.6 ml/l Uniquat (QAC-50) as cationic surfactant (CSMZ). The mixture was then stirred at room temperature for 4 hours at 300 rpm (Karadag et al., 2007). The zeolite then was filtered and washed with distilled water several times. After that, the absorbent was dried in an oven at a temperature of 105 °C for 15 hours.

2.2  est Procedures

2.2.1 Batch Studies

Serial batch studies were conducted at room temperature (28 ± 1 °C) to investigate the influence of pH and dosage for removing colour, COD, turbidity and iron ion from peat water. Shaking speed of 200 rpm for 20 minutes were fixed and operated respectively. A working volume of 150ml peat water sample was set up in 250 ml conical flasks. Preceding the batch studies, initial concentration for those parameters was determined. The optimum pH and dosage of absorbent were determined. Subsequently, the percentage of removal was finally determined, plotted, and compared.

2.2.2 Batch Column Studies

Column studies were carried out using a plastic column with dimensions: 5.4 cm diameter and 48 cm length. Three adsorbents were filled inside the column at a specific depth with the supporting layers of marbles, cotton wool, and perforated net. Total volume of 2000 ml peat water was pumped in the up flow mode from the vessel into the column by using a Masterflex peristaltic pump at a minimum flow rate of (30, 60, 90) ml/min. In this study, however, column studies were performed un-continuously (batch) due to limitations of time. All parameters related to the column design are summarized in the following Table 1.

Table 1. Column studies parameters

 

Parameters

Unit Value
Diameter,

cm

5.4

Horizontal Surface Area, A cm2

22.9

Column volume, V cm3 1099.3
Flowrate, Q ml/min 30, 60, 90
Surface Loading Rate, SLR= Q/A cm/min 1.31, 2.62, 3.93

 

The serial sequence arrangements of adsorbents were conducted as shown in Figure 1 below. Effluent samples were collected at various time intervals, whilst maintaining room temperature, and analysed.

 Figure 1

 

Figure 1. Schematic diagrams of lab-scale column studies

 

3. Results and Discussion

3.1 eat Water Characterization

Surface water originating from the peat swamp forest was taken from Beriah peat swamp river along the Kerian River on several occasions as the main sample. The characterization of peat water was carried out at the sampling point (in-situ measurement) using a multi-parameter probe as well as in the environmental laboratory of civil engineering, USM. Fundamentally, the characterization procedures were based on the Standard Methods for the Examination of Water and Wastewater (APHA, 1992). Table 2 represents the peat water characteristics in average value and the comparison to the standard drinking water quality in Malaysia.

Table 2. The characteristics of peat water sample from Beriah Peat Swamp Forest

 

Parameters

Unit

Average Value

pH

-

4.67 – 4.98
Temperature

°C

27.8

TDS

mg/L

20.6

DO

mg/L

3.4

Conductivity uS/cm

34.5

Salinity

Ppt

0.02

Color

TCU

224.7
Turbidity

NTU

20.8

COD

mg/L

33.3

Iron, (Fe)

mg/L

1.24

NH3-N

mg/L

0.51

 

 

 

Thirteen parameters were successfully determined where the first six parameters, including pH, temperature, TDS, DO, conductivity, and salinity were measured at the sampling point, whilst the rest of the parameters, including colour, turbidity, COD, iron ion, Ammoniacal Nitrogen, NH3-N, Ammonia (NH3), and Ammonium (NH4+) were examined from the sample brought to the environmental laboratory on the same day.

Acidic pH of the peat water was predicted due to the composition of the surrounding peat soil itself which had been formed by decaying material possessing humic substances (Rieley, 1992). Besides that, humic substances also lead to the high organic content as humic substances are comprised of numerous oxygen containing functional group and fractions (humic acid, fulvic acids and humin) with different molecular weights which mean yielding high concentration of turbidity and COD as well as coloured water (Torresday et al., 1996). Moreover, composition of peat soil may also have an impact on the iron ion concentration of peat water (Botero et al., 2010).

From the thirteen parameters, five parameters were indicated exceeding the standard limit. These parameters were pH, colour, turbidity, COD, and iron ion that showed values of 4.67 – 4.98, 224.7 TCU, 20.8 NTU, 33.3 mg/l, and

1.24 mg/l respectively while the standard limit of these parameters are 6.5 – 9.0, 15 TCU, 5 NTU, 10 mg/l, and 0.3 mg/l accordingly.

3.2  Effect of Initial pH on the Efficiency of Colour, COD, Turbidity, and Iron Ion (Fe) Removal

Influence of initial pH on the adsorption capacity for removing colour, COD, turbidity, and iron ion were investigated.

Figure 2(a) to Figure 2(d) below, displayed the percentage removal of colour, COD, turbidity, and iron ion against pH of adsorbents respectively.

Figure 2a to 2d

 

 

Figure 2(a) shows the maximum removal percentage of colour that was removed by natural zeolite, CSMZ, and granular activated carbon (GAC) which were 79%, 90%, 82% respectively. This adsorption is depended on the characteristic of adsorbents itself. For zeolite and CSMZ were related to the amount of cationic ions (Al3+) increased, resulting in high reaction activity and GAC was related to the adsorption capacity. It was observed that the adsorption capacity was highly dependent on the pH of the solution, and indicated that the colour removal efficiencies decreased with the increase of solution pH.

 

The pH of the system exerts profound influence on the adsorptive uptake of adsorbate molecules presumably due to its influence on the surface properties of the adsorbent and ionization or dissociation of the adsorbate molecule. Figure 2(b) represents the percentage removal of natural zeolite and CSMZ where they reach optimum efficiency in removing organic compound (COD) at pH 2 with efficiency of 53% and 60% respectively. Meanwhile, the highest percentage removal of COD for GAC was achieved at pH 4 with efficiency obtained about 61%. Identical trends in colour removal were exhibited in percentage removal of COD for natural zeolite, CSMZ and GAC. In fact, this result also reveals that GAC has the highest percentage removal among natural zeolite and CSMZ yet optimum in difference pH solution. Neutralization mechanism occurs in low pH makes color removal, COD removal and Turbidity removals at pH 2 are higher for most of absorbents in this process.

In Figure 2(c), percentage turbidity removal against pH for each adsorbent revealed that optimal reduction of turbidity was obtained in an acidic environment with efficiency removal of 96%, 98%, 95% for natural zeolite, CSMZ, and GAC respectively. When the pH of the solution was adjusted above pH 6 to pH 12, the tendencies of all adsorption performances were gradually decreased. Moreover, it also showed that the lowest efficiency for the three adsorbents were identified at pH 12 with percentage values removal 55%, 61%, and 59% for natural zeolite, CSMZ, and GAC respectively.

Figure 2(d) demonstrates the removal efficiencies of iron ion as a function of the influent pH. The maximum removal of iron ion was observed at pH 8 for both natural zeolite and CSMZ whereas GAC had its optimum removal at pH 6. Natural zeolite and CSMZ only yielded 73% and 62% removal efficiency while GAC had more significant removal with removal efficiency of 80% to the iron ion concentration. Further, it is evident from the graph that gradual increment of removal efficiency for natural zeolite, CSMZ, and GAC occurred when the initial pH of the solution was increased to higher values. Somehow, at pH values greater than 6 the removal efficiency of GAC reduced slightly while for natural zeolite and CSMZ the reduction occurred from pH values above 8.

3.3  Effect of Adsorbent Dosage on the Efficiency of Colour, COD, Turbidity, and Iron Ion (Fe) Removal

The effect of adsorbent dosage was studied for all adsorbents employed on colour, COD, turbidity, and iron ion removal by varying the dosage of adsorbent and keeping all other experimental conditions constant. The pH was set to acidic conditions which were most favourable in obtaining the highest removal efficiency. In this study, to find optimal adsorbent dosage of natural zeolite and CSMZ, the appropriate experiments were carried out at adsorbent dosages in the range of 0.5 g to 5.0 g while for GAC, the adsorbent dosage was varied from 0.01 g to 4.0

  1. The experimental results for all the adsorbents are represented by Figure 3(a) to Figure 4(d).

Figure 3a to 4d

 

Figure 3. Percentage of color (a), COD (b), turbidity (c), and Fe (d) removal against pH for NZ, and CSMZ

 

Figure 3(a) displays the relationship between the amount of adsorbent mass (dosage) and adsorption efficiency for natural zeolite and CSMZ in terms of removing colour. The colour removal of peat water increased from about 25% to 52% with increasing adsorbent dosage of natural zeolite from 0.5 g to 3.5 g whereas for CSMZ, removal percentage increased from 41% to 53% with increasing adsorbent dosage from 0.5 g to 2.0 g. However, further increase in adsorbent dosage to 5.0 g only led to slight degradation of removal efficiency to 50% and 41% for natural zeolite and CSMZ respectively. This degradation with further increases in adsorbent dosage was due to the unsaturated adsorption active sites during the adsorption process since the adsorbates in the vessel were only shaken for 20 minutes (insufficient time). Besides, modification of zeolite by cationic surfactant had proven to have better colour removal as presented in the graph.

Percentage removal of COD against the adsorbent dosage is shown in Figure 3(b). It was observed that the highest percentage removal for both natural zeolite and CSMZ to remove COD were 51% and 59%, achieved at adsorbent dosage 3.5 g and 2.0 g respectively.

The variations in removal of turbidity of peat water at various system pH are shown in Figure 3(c). The removal rate of turbidity was highest at the adsorbent dosage of 0.5 g with 70% and 93% removal efficiency for respective natural zeolite and CSMZ. The removal rate showed a smooth downward trend with the increase in adsorbent dosage. Concurrently, the adsorption capacity gradually decreased with the increasing adsorbent dosage. The least efficient removal of turbidity was noted at dosage 5.0 g with percentage removal recorded for natural zeolite and CSMZ only 57% and 70% respectively.

Figure 3(d) demonstrates the percentage iron ion removal of natural zeolite and CSMZ with respect to their dosage. The result shows that there was a significant difference trend in iron ion adsorption efficiencies between natural zeolite and CSMZ. For natural zeolite, it was shown that the removal percentage of iron ion had increased until it reached 1.0g of dosage with 72% of removal efficiency. On the other hands, CSMZ was only able to remove about 63% of iron ion when its dosage was increased to 2.5 g. The lowest percentage removals were 47% and 57% recognized at the adsorbent dosage 5.0 g for respective natural zeolite and CSMZ.

Figure 4

 

 

Figure 4. Percentage of color (a), COD (b), turbidity (c), and Fe (d) removal against dosage for GAC

The result illustrated in Figure 4(a) shows the maximum removal percentage of colour for GAC at 2.5 g dosage was 62%. Moderate increment in colour removal was identified along with the addition dosage of 2.5 g whilst abatement of removal efficiency began subsequently at adsorbent dosage of 3.0 g to 4.0 g.

The results from Figure 4(b) indicated that increasing the GAC dosage would increase the efficiency in removing COD respectively. The optimum dosage was recorded at 3.0 g with 72% of removal efficiency. Meanwhile, increasing the dosage above 3.0 g exhibited a slight decrease in removal efficiency with 67% to 61% for COD removal. A better result in removing COD was also shown by GAC compared to the natural zeolite and CSMZ.

The percentage of turbidity removed by GAC in different dosages is described in Figure 4(c). The highest removal was indicated at adsorbent dosage 2.5 g with removal efficiency of 70% while the minimum removal was 52% recorded at the adsorbent dosage 0.01 g. However, starting from adsorbent dosage of 3.0 to 4.0 g, removal efficiency began to decrease to 68%, 67%, and 69% respectively.

The result of percentage removal of iron ion by GAC in peat water is presented in Figure 4(d). It was found that the rate of removal was rapid in the initial dosage between 0.01 g to 3.0 g at which the removal efficiency increased from 28% to 71% accordingly. Subsequently, a few significant changes in the rate of removal were observed. Possibly, at the beginning, the solute molecules were absorbed by the exterior surface of adsorbent particles, so the adsorption rate was rapid. However, after the optimum dose was reached, the adsorption of the exterior surface becomes saturated and thereby the molecules will need to diffuse through the pores of the adsorbent into the interior surface of the particle (Ahmad & Hameed, 2009).

3.4 Batch Column Experiment

On the first running, the column was packed with natural zeolite (1st layer), limestone (2nd layer), and GAC (3rd layer) as shown in Figure 5(a). Removal efficiency for colour, COD, turbidity, and iron ion was recognized to be increased when the contact time was increased. At the time interval 1 hour to 6 hours, however, the increment was not so significant. The removal efficiency at 1 hour treatment was 39%, 21%, 54%, 36% while at 6 hours treatment was 77%, 65%, 73%, 60% recorded for respective colour, COD, turbidity, and iron ion. Poor removal efficiency at 1 hour treatment indicated that the required time to remove all parameters were insufficient. It is evident that if the adsorption process is allowed to run for 24 hours on the column, the removal efficiency shows notable removal. Percentage removals of colour, COD, turbidity, and iron ion at 24 hours were 83%, 72%, 76%, 65% respectively. Furthermore, the highest removal for respective colour, COD, turbidity, and iron ion were obtained at 48 hours treatment with 87%, 81%, 86%, and 79% of removal efficiency.

Figure 5

 

 

Figure 5. Percentage removal of color, COD, turbidity, and Fe for 1st run(a), 2nd run(b), and 3rd run (c) at flowrate 30 ml/min

On the second running, the column was packed with CSMZ (1st layer), limestone (2nd layer), and GAC (3rd layer) as presented in Figure 5(b). The removal percentages of colour, COD, turbidity, and iron ion were noticed after 1 hour to be 52%, 49%, 71%, and 30% respectively. The time of contact between adsorbate and adsorbent is proven to play an important role during the uptake of pollutants from peat water samples by adsorption process. In addition, the development of charge on the adsorbent surface was governed by contact time and hence the efficiency and feasibility of an adsorbent for its use in water pollution control can also be predicted by the time taken to attain its equilibrium (Sharma, 2003). Removal efficiency of 90% for colour, 81% for COD, 91% for turbidity, and 57% for iron ion were obtained at 24 hours of contact time.

On the third running, the column was packed with a difference sequence of CSMZ (1st layer), GAC (2nd layer), and limestone (3rd layer) demonstrated in Figure 5(c). It can be seen that the adsorption of these four parameters were slightly rapid at time interval 1 hour to 6 hours treatment. Further gradual increment with the prolongation of contact time form 24 hours to 48 hours has also occurred. Observation at 1 hour treatment recorded the removal efficiency of 62%, 58%, 87%, and 48% for respective colour, COD, turbidity, and iron ion. Whereby, 6 hours treatment had yielded higher removal percentage removal of 75%, 77%, 93%, and 58% respectively for colour, COD, turbidity, and iron ion. Further removal of colour, COD, turbidity, and iron ion was recorded when the treatment was run for 24 hours which exhibited 92%, 91%, 98%, 77% of removal efficiency respectively. Prolonged time to 48 hours indeed showed better removal of colour, COD, turbidity, iron ion with percentage removal of 95%, 100%, 99%, and 89% respectively. It can be seen that the arrangement of CSMZ, GAC, and limestone has the highest removal efficiency for all parameters at the flow rate influent of 30 ml/min.

Figure 6

 

 

Figure 6. Percentage removal of color, COD, turbidity, and Fe against contact time for 2nd run(a) at flow rate 60 mL/min and at flowrate 90 mL/min (b)

The experimental adsorption behaviour was further seen for its adsorption capacity during 60 ml/min and 90 ml/min flow rate. In addition, the flow rate adjustment had also resulted in differences in surface loading rate in which the sample going through the surface area of adsorbent bed (horizontal surface area, A= 22.9 cm2) for 30 ml/min equals to 1.31 cm/min while the flow rate of 60ml/min equals to 2.62 cm/min, and the flow rate of 90 ml/min equals to 3.93 cm/min. The percentage removal for both flow rate adjustments of CSMZ, GAC, and limestone arrangement were exhibited in Figure 6 (a) and Figure 6 (b). Based on these Figures, lower removal efficiencies were indicated at 1 hour time interval of 6 hours of contact time. The percentage removals for both 60 ml/min and 90 ml/min flow rate at 1 hour were 57%, 56%, 80%, 38% and 49%, 58%, 61%, 35% for colour, COD, turbidity, and iron ion respectively. Subsequently, when the contact time was at 6 hours, the removal percentage were 70%, 79%, 88%, 56%, and 60%, 77%, 70%, 47%. However, the maximum removal efficiency at 48 hours for both flow rates was not much different from the 30ml/min flow rate.

3.5 Adsorption Isotherm

In the present investigation, the experimental data were tested with respect to both Freundlich and Langmuir isotherms. Based on the linearized Freundlich isotherm models for natural zeolite, CSMZ, GAC in terms of adsorptive capacity to remove colour, COD, turbidity, and iron ion, the majority of them exhibited fits for all adsorbate with regression value (R2) above 0.6, except for iron ion and turbidity for respective CSMZ, and GAC. On the other hand, the linearized Langmuir isotherm models for natural zeolite, CSMZ, GAC in terms of adsorptive capacity to remove colour, COD, turbidity, and iron ion, had exhibited fits for all adsorbate with regression value (R2) was at range of 0.242 to 0.912. The Langmuir isotherm model for all adsorption mechanisms were identified to have smaller R2 values compared to the Freundlich isotherm model. Thereby, it can be concluded that the Freundlich isotherm model was more applicable in determining the adsorption mechanisms for this study.

3.6  Peat Water Quality Post Column Treatment

Peat water treatment in column with serial sequence of natural zeolite, CSMZ, and limestone had exhibited the highest removal with percentage removal at 48 hours at 95%, 100%, 99%, and 89% for colour, COD, turbidity, and iron ion respectively. Final readings at 48 hours treatment on pH, TDS, DO, conductivity, salinity, colour, turbidity, COD, and iron ion were 7.78, 74 mg/l, 4.03 mg/l, 137 uS/cm, 0.05 ppt, 12 TCU, 0.23 NTU, 0 mg/l, and 0.11 mg/l respectively (see Table 3). These findings, on the other hand, have indicated that peat water treatment had successfully produced water which satisfied the standard drinking water quality.

Table 3. The characteristics of   results of peat water treatment from Beriah Peat Swamp Forest

Table 3

 

Note: 1. *)Malaysian standard for drinking water quality;2. NA = Not analyzed.

4. Conclusions

From the results presented in this paper, the following conclusions can be drawn:

1)       The optimum removal of colour, COD, and turbidity for all adsorbents were observed to occur during acidic conditions at pH range 2 – 4 whereas for iron ion, the maximum removal was noted at pH range 6 – 8.

2)       At pH 2, CSMZ yielded the highest removal for colour and turbidity with removal efficiency of 90% and 98% respectively. Meanwhile, GAC has the highest percentage removal of COD at pH 4 with removal efficiency obtained about 61% while at pH 6, GAC exhibited the best removal of iron ion with percentage removal around 80%.

3)       CSMZ revealed stronger adsorptive capacity for colour, COD, and turbidity compared to natural zeolite.

4)       The optimal removal was achieved for the serial sequence of CSMZ (1st layer), GAC (2nd layer), and Limestone (3rd layer) with the adsorbent media at 30 ml/min of flow rate.

5)       Freundlich isotherm was more reliable to describe the adsorption mechanisms of colour, COD, turbidity, and iron ion for natural zeolite, CSMZ, and GAC.

Acknowledgement

The authors wish to acknowledge the financial support from the School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia and Universiti Sains Malaysia (Short Term Grant No. 304/PAWAM/60312015).

References

Ahmad, A. A., & Hameed, B. H. (2009). Reduction of COD and colour of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon. Journal of Hazardous Materials, 172, 1538-1543. http://dx.doi.org/10.1016/j.jhazmat.2009.08.025

American Public Health Association (APHA), AWWA, WPCF. (1992). Standard Methods for Examination of Water and Wastewater (16th ed.). Washington.

Bhatmagar, A., & Minocha, A. K. (2006). Conventional and non-conventional adsorbents for removal of pollutant from water – A review. In Indian Journal of Chemical Technology, 13, 203-217

Botero, W. G., Oliveira, L. C., Rocha, J. C., Rosa, H. R., & Santos, A. D. (2010). Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential meals present in tropical           soils.      Journal                 of                          Hazardous                         Materials,   177,                 307-311.

http://dx.doi.org/10.1016/j.jhazmat.2009.12.033

Bowman, R. S. (2003). Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesoporous Materials, 61, 43-56. http://dx.doi.org/10.1016/S1387-1811(03)00354-8

Chao, H. P., & Chen, S. H. (2012). Adsorption characteristics of both cationic and oxyanionic metal ions on hexadecyltrimethylammonium bromide-modified NaY zeolite. Chemical Engineering Journal, 193-194, 283-289. http://dx.doi.org/10.1016/j.cej.2012.04.059

Ćurković, L., Cerjan-Stefanović, Š., & Filipan, T. (1997). Metal ion exchange by natural and modified zeolites,

Water Research, 31(6), 1379-1382. http://dx.doi.org/10.1016/S0043-1354(96)00411-3

Eltekova, N. A., Berek, D., Novak, I., & Belliardo, F. (2000). Adsorption of Organic Compounds on Porous Carbon Sorbents. Carbon, 38, 373-377. http://dx.doi.org/10.1016/S0008-6223(99)00113-X

Franceschi, M., Girou, A., Carro-Diaz, A. M., Maurette, M. T., & Puech-Coste, E. (2002), Optimisation of the coagulation–flocculation process of raw water by optimal design method. Water Research, 36(14), 3561-72.

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407-418. http://dx.doi.org/10.1016/j.jenvman.2010.11.011

Hidaka, T., Hiroshi, T., & Kishimoto, N. (2003). Advanced treatment of sewage by pre-coagulation and biological filtration process. Water Research, 37(17), 4259-4269. http://dx.doi.org/10.1016/S0043-1354(03)00353-1

Huling, S. G., Robert, G. A., Raymond, A. S., & Matthew, R. M. (2001). Influence of Peat on Fenton Oxidation.

Water Research, 35(7), 1687-1694. http://dx.doi.org/10.1016/S0043-1354(00)00443-7

Jamil, T. S., Ibrahim, H. S., Abd El-Maksoud, I. H., & El-Wakeel, S. T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258, 34-40. http://dx.doi.org/10.1016/j.desal.2010.03.052

Karadag, D., Akgul, E., Tok, S., Erturk, F., Arif Kaya, M., & Turan, M., (2007). Basic and reactive dye removal using natural and modified zeolite. Journal of Chemical Engineering Data, 52, 2436-2441. http://dx.doi.org/10.1021/je7003726

Liu, T., Chen, Zh. L., Yu, W. Z., Shen, J. M., & Gregory, J. (2011). Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water. Water Research, 45(14), 4260-4268. http://dx.doi.org/10.1016/j.watres.2011.05.037

Li, Zh. H., & Bowman, R. S. (2001). Regeneration of surfactant-modified zeolite after saturation with chromate and perchloroethylene. Water Research, 35(1), 322-326. http://dx.doi.org/10.1016/S0043-1354(00)00258-X

Li, Z. H., Jones, H. K., Robert, S., Bowman, & Helferich, H. (1999). Enhanced Reduction of Chromate and PCE by Pelletized Surfactant Modified Zeolite/Zerovalent Iron. Environmental Science and Technology, 33, 4326-4330. http://dx.doi.org/10.1021/es990334s

Li, Z., Roy, S. J., Zou, Y., & Bowman, R. S. (1998). Long Term Chemical and Biological Stability of Surfactant Modified Zeolite. Environmental Science Technology, 32, 2628-2632. http://dx.doi.org/10.1021/es970841e

Loo, S. L., Fane, A. G., Krantz, W. B., & Lim, T. T. (2012). Emergency water supply: A review of potential technologies        and                   selection       criteria.       Water                Research,                               46(10),   3125-51.

http://dx.doi.org/10.1016/j.watres.2012.03.030

 

Paune, F., Caixach, J., Espadaler, I., Om, J., & Riveraet, J. (1998). Assessment on the removal of organic chemicals from raw and drinking water at a Llobregat river water works plant using GAC. Water Research, 32(11), 3313-3324. http://dx.doi.org/10.1016/S0043-1354(98)00108-0

Rieley, J. O. (1992). The ecology of tropical peatswamp forest ± a South-east Asian perspective. In Tropical Peat, Proceedings of International Symposium on Tropical Peatland, Kuching, Sarawak, Malaysia, 6±10 May 1991

(B.Y.  Aminuddin, ed.) pp.  244±54. Kuching, Malaysia:  Malaysia  Agricultural Research  Development Institute & Department of Agriculture, Sarawak, Malaysia

Syafalni, S., Abustan, I., Dahlan, I., & Wah, C. K. (2012b). Treatment of Dye wastewater Using Granular Activated Carbon and  Zeolite  Filter. Modern Applied Science,  6(2), 37-51. http://dx.doi.org/10.5539/mas.v6n2p37

Syafalni, S., Abustan, I., Zakaria, S. N. F., & Zawawi, M. H. (2012a). Raw water treatment using bentonite-chitosan as a coagulant. Water Science & Technology: Water Supply, 12(4), 480-488. http://dx.doi.org/10.2166/ws.2012.016

Torresdey, J. L., Tang, L., & Salvador, J. M. (1996). Copper adsorption by esterified and unesterified fractions of sphagnum peat moss and its different humic substances. Journal of Hazardous Materials, 48,  191-206. http://dx.doi.org/10.1016/0304-3894(95)00156-5

World Wildlife Fund (WWF) Malaysia. (2004). The importance of rivers.

Wosten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat- Water interrelationships in a          Tropical Peatland Ecosystem in Southeast Asia. Catena, 73, 212-224. http://dx.doi.org/10.1016/j.catena.2007.07.010

Zhang, P., Tao, X., Li, Z., & Bowman, R. S. (2002). Enhanced Perchloroethylene Reduction in Column Systems Using Surfactant Modified Zeolite/zero-valent Iron Pellets. Environmental Science and Technology, 36, 3597-3603. http://dx.doi.org/10.1021/es015816u

Modern Applied  Science;  Vol.  7,  No.  2;  2013

ISSN 1913-1844     E-ISSN 1913-1852

Published by Canadian Center of Science and Education

S. Syafalni1, Ismail Abustan1, Aderiza Brahmana1, Siti Nor Farhana Zakaria1 & Rohana Abdullah1

1 School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia. Correspondence:  S. Syafalni,  School of Civil Engineering, Engineering Campus,  Universiti Sains Malaysia,

Nibong Tebal 14300, Penang, Malaysia. E-mail: cesyafalni@eng.usm.my

Received: December 3, 2012        Accepted: January 14, 2013        Online Published: January 22, 2013 doi:10.5539/mas.v7n2p39                                                     URL: http://dx.doi.org/10.5539/mas.v7n2p39

Shared via Creative Commons Attribution 3.0 Unported license

 

Categories : Case Studies & Application Stories, Science and Industry Updates

Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania – MyronLMeters.com

Posted by 11 Feb, 2013

TweetStudy of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania Abstract This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds […]

Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania

Abstract

This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants.

1. Introduction

Sources of wastewater in the selected area are microindustries (like laundries, hotels, hospitals, etc.), macroindustries (industrial wastewater) and household activities (domestic wastewater). Wastewater is collected through sewage systems (underground sewage pipes) to one or more centralized Sewage Treatment Plants (STPs), where, ideally, the sewage water is treated. However, in cities and towns with old sewage systems treatment stations sometimes simply do not exist or, if they exist, they might not be properly equipped for an efficient treatment. Even when all establishments are connected to the sewage system, the designed capacities are often exceeded, resulting in a less efficient sewage system and occasional leaks.

Studies of water quality in various effluents revealed that anthropogenic activities have an important negative impact on water quality in the downstream sections of the major rivers. This is a result of cumulative effects from upstream development but also from inadequate wastewater treatment facilities. Water quality decay, characterized by important modifications of chemical oxygen demand (COD), total suspended solids (TSSs), total nitrogen (TN), total phosphorous (TP), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), and so forth [11] are the result of wastewater discharge in rivers. Water-related environmental quality has been shown to be far from adequate due to unknown characteristics of wastewater . Thus an important element in preventing and controlling river pollution by an effective management of STP is the existence of reliable and accurate information about the concentrations of pollutants in wastewater. Studies of wastewater in Danube basins can be found, for instance, in central and eastern European countries, but we are not aware of extensive studies of wastewater quality at regional/national level in Romania.

This paper analyses the chemical composition of wastewater at several collectors/stations in an important Romanian city, Galati, before being discharged into natural receptors, which in this case are the Danube and Siret Rivers. No sewage treatment existed when the monitoring campaign took place, except the mechanical separation. The study presented here is part of a larger project aiming at establishing the best treatment technology of wastewater at each station. Presently this project is in the implementation stage at all stations. Possible relationships between concentrations of various chemical residues in wastewater and with pollution sources are also investigated. The study is based on daily measurements of chemical parameters at five city collectors in Galati, Romania, during a two-week campaign in February 2010.

2. Experimental Analysis

2.1. Location of Sampling Sites

Galati-Braila area is the second urban agglomeration in Romania after Bucharest, which is located in Romania at the confluence of three major rivers: Danube, Siret, and Prut. The wastewater average flow is about 100000 m3/day . The drainage system covers an area of 2300 ha, serving approximately 99% of the population (approximately 300000 habitants). The basic drainage system is very old, dating back to the end of the 19th century, and was extended along with the expansion of the city due to demographic and industrial evolution. There are several collectors that collect wastewater and rainwater from various areas with very different characteristics, according to the existing water-pipe drainage system. There is no treatment at any station, except for simple mechanical separation. However, industrial wastewater is pretreated before being discharged in the city system. The five wastewater collectors are denoted in the following as S 1 , S 2 , … , S 5. Four of them discharge in the Danube River and the fifth discharges in the Siret River (which is an affluent of Danube River). Figure 1 shows the distribution of the monitoring sites and highlights the type of collecting area (domestic, industrial, or mixed). For the sake of brevity, these stations will be named in the present paper as “domestic,” “mixed,” and “industrial” stations, according to the type of collected wastewater. The mixture between domestic and industrial water at the two mixed collectors is the result of changes in city planning and various transformations of small/medium enterprises.

Figure 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Monitoring sampling sites of wastewater from Galati city.

Technical details about each collector/station can be found in Table 1. The first station, S1, collects 10% of the total quantity of wastewater. A high percentage of the water collected at this station comes from domestic sources from the south part of the city (more than 96%). Station S2 collects 64% of the total daily flow of wastewater, out of which 30% comes from domestic sources and the rest (70%) is industrial. Most of the industrial sources in this area are food-production units (milk, braid, wine) while the domestic sources include 20 schools, 4 hospitals, and important social objectives. Station S3 is located in the old part of the city and collects 5% of the total wastewater and has domestic sources. At the fourth station, S4, 11% of the quantity of wastewater is collected from domestic (70%) and industrial (30%) sources. The last collector, S5, collects wastewater from the industrial area of the city, where the most important objectives are a shipyard, metallurgical, and mechanical plants and transport stations.

Table 1

Table 1: Characteristics of collectors S 1 , … , S 5.

2.2. Physico-Chemical Parameters and Methods of Analysis

The physico-chemical parameters which were measured are the following:(i)pH;(ii)chemical oxygen demand (COD) and dissolved oxygen (DO);(iii)nutrients such as nitrate (N-NO3) and phosphate (P-PO4) (these were included due to their impact on the eutrophication phenomenon);(iv)metals such as aluminum (Al+3), soluble iron (Fe+2), and cadmium (Cd+2).

The pH and DO were determined in situ using a portable multiparameter analyzer. Other chemical parameters such as COD, metals and nutrients were determined according to the standard analytical methods for the examination of water and wastewater .

The COD values reflect the organic and inorganic compounds oxidized by dichromate with the following exceptions: some heterocyclic compounds (e.g., pyridine), quaternary nitrogen compounds, and readily volatile hydrocarbons. The concentration of metals (Al+3, Cd+2, Fe+2) was determined as a result of their toxicity.

The value of pH was analyzed according to the Romanian Standard using a portable multiparameter analyzer, Consort C932.

COD parameter was measured using COD Vials (COD 25–1500 mg/L, Merck, Germany). The digestion process of 3 mL aliquots was carried out in the COD Vials for 2 h at 148°C. The absorbance level of the digested samples was then measured with a spectrophotometer at λ = 605 nm (Spectroquant NOVA 60, Merck, Germany), the method being analogous to EPA methods [20], US Standard Methods, and Romanian Standard Methods.

The DO parameter was analyzed according to Romanian Standard using a portable multiparameter analyzer, Consort C932.

Aluminum ions (Al+3) were determined using Al Vials (Aluminum Test 0.020–1.20 mg/L, Merck, Germany) in a way analogous to US Standard Methods. The absorbance levels of the samples were then measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 550 nm. The method was based on reaction between aluminum ions and Chromazurol S, in weakly acidic-acetate buffered solution, to form a blue-violet compound that is determined spectrophotometrically. The pH of the sample must be within range 3–10. Where necessary, the pH will be adjusted with sodium hydroxide solution or sulphuric acid.

Iron concentration (Fe+2) was determined using Iron Vials (Iron Test 0.005–5.00 mg/L, Merck, Germany) and their absorbance levels were then measured using a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 565 nm. The method was based on reducing all iron ions (Fe+3) to iron ions (Fe+2). In a thioglycolate-buffered medium, these react with a triazine derivative to form a red-violet complex which is spectrophotometrically determined. The pH must be within range 3–11. Where necessary the pH was adjusted with sodium hydroxide solution or sulphuric acid.

Cadmium ions (Cd+2) were determined using Cadmium Vials (Cadmium Test 0.005–5.00 mg/L, Merck, Germany), their absorbance levels being measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 525 nm. The method was based on the reaction of cadmium ions with a cadion derivative (cadion-trivial name for 1-(4-nitrophenyl)-3-(4-phenylazophenyl)triazene), in alkaline solution, to form a red complex that is determined spectrophotometrically. The pH must be within the range 3–11, and, if not, the pH will be adjusted with sodium hydroxide solution or sulphuric acid.

Nitrogen content was determined using Nitrate Vials (Nitrate Cell test in seawater 0.10–3.00 mg/L NO3-N or 0.4–13.3 mg/L N O3 −, Merck, Germany). The method being based on the reaction of nitrate ions with resorcinol, in the presence of chloride, in a strongly sulphuric acid solution, to form a red-violet indophenols dye that is determined spectrophotometrically. The absorbance levels of the samples were then measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 500 nm.

Phosphorous content was determined using Phosphate Vials (Phosphate Cell Test 0.5–25.0 mg/L PO4-P or 1.5–76.7 mg/L P O4 − 3, Merck, Germany) with a method that was analogous to the US Standard Methods [17]. The method was based on the reaction of orthophosphate anions, in a sulphuric solution, with ammonium vanadate and ammonium heptamolybdate to form orange-yellow molybdo-vanado-phosphoric acid that is determined spectrophotometrically (“VM” method). The absorbance levels of the samples were then measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 410 nm.

All results were compared with standardized levels for wastewater quality found in accordance with European Commission Directive [23] and Romanian law [24].

3. Results and Discussion

3.1. The Acidity (pH)

The results for pH for all the investigated five collectors are shown in Figure 2.

Figure 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Daily variation of pH at all sites.

Generally, the wastewater collected at the monitored sites is slightly alkaline. The pH varies between 6.8 and 8.3—average value 7.82—thus the pH values are within the accepted range for Danube River according to the Romanian law, which is between 6.5 and 9.0. The pH variation is relatively similar at collectors S1–S4 (domestic and/or mixed domestic-industrial contribution). Lower pH values are observed at S5, which is dominated by industrial wastewater, originating from major enterprises and heavy industry. However, these values are not too low, since usually pH values for industrial wastewater are smaller than 6.5.

A significant decrease in the pH value was observed during the 8th day of the analyzed period at each station. Interestingly, a heavy snowfall took place at that particular time, thus the decrease could be attributed to the mixing between wastewater and a high quantity of low pH water, resulted from the melting of snow . One could speculate that the snowfall, which has an acidic character, might have affected the pH of the wastewater through “run off” phenomena.

No other snowfall took place during the monitoring campaign, thus no definite conclusion can be drawn for a possible relationship between pH and snowfalls.

3.2. Results for Chemical Oxygen Demand (COD)

Detection of COD values in each sampling site of wastewater is presented in Figure 3.

Figure 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Daily variation of COD at all sites.

All COD values are higher than the maximum accepted values (125 mg O2/L) of the Romanian Law . Both organic and inorganic compounds have an effect on urban wastewater’s oxidability since COD represents not only oxidation of organic compounds, but also the oxidation of reductive inorganic compounds. That means some inorganic compounds interfere with COD determination through the consumption of C r2O7 − 2. Two different behaviors can be observed, which are associated with the type of the collected wastewater as follows.(i)The first group consists of stations S2, S4 and S5 where the wastewater has an important industrial component. At these stations, COD values are approximately between 150 and 300 mg O2/L, smaller, for instance, than COD values found by in the raw wastewater produced by an industrial coffee plant where COD values were between 4000 and 4600 mg O2/L. Also, the temporal variation of COD values at all three stations is similar with no significant deviations from the average value, which is about 250 mg O2/L. Interestingly, the lowest COD level can be seen, on the average, at S5, which has the highest percentage of industrial wastewater. The second group comprises the “domestic” stations S1 and S3. The COD levels are higher, with values of 500 mg O2/L or more. Also, the variability is clearly higher than at the industrial-type stations. No clear association between the variations at the two sites can be seen. A peak in COD was measured in the 14th day of the study at site S1 (1160 mg O2/L). Since S1 is a domestic type station, it is unlikely that some major discharge led to such a high variation of COD. Unfortunately, no other information exists that might indicate a possible cause for this increase.

3.3. Results for Dissolved Oxygen (DO)

The amount of DO, which represents the concentration of chemical or biological compounds that can be oxidized and that might have pollution potential, can affect a sum of processes that include re-aeration, transport, photosynthesis, respiration, nitrification, and decay of organic matter. Low DO concentrations can lead to impaired fish development and maturation, increased fish mortality, and underwater habitat degradation . No standards are given by Romanian or European Law for DO in wastewater. The DO values for the analyzed wastewater at all five sites are shown in Figure 4.

Figure 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Daily variation of DO at all sites.

Concentration of DO varies at all sampling sites and has values between 0.96 (at S2) and 11.33 (at S4) mg O2/L with a mean value of 6.39 mg O2/L. These are clearly higher than DO values measured, for instance, in surface natural waters in China, where the Taihu watershed had the lowest DO level (2.70 mg/L), while in other rivers DO varied from 3.14 to 3.36 mg O2/L [34]. On the other hand, such high values of DO (9.0 mg O2/L) could be found, for instance, in the Santa Cruz River , who argued that discharging industry and domestic wastewater induced serious organic pollution in rivers, since the decrease of DO was mainly caused by the decomposition of organic compounds. Extremely low DO content (DO < 2 mg O2/L) usually indicates the degradation of an aquatic system .

The DO levels vary similarly for all selected sampling sites. The DO levels cover a wide range, with a minimum value of 1.0 mg O2/L at S1 and S3 and a maximum value of 11.33 mg O2/L at S4. There is a drop in DO at all stations, observed is in the 8th day of the monitoring interval, which coincides with the day when a similar decrease in pH took place. The lowest values of DO are observed for S1, one of the two “domestic” stations. It is interesting to note that DO at S5 is low although the wastewater here comes only from industry sources.

3.4. Metals

The variation of Al+3, Fe+2, and Cd+2 concentrations in wastewater are shown in Figures 5, 6, and 7. Al+3 concentrations (Figure 5) were mostly within the 0.05–0.20 mg/L range at all the sampling sites. However, during the beginning and the end of the monitoring campaign, Al+3 concentration at station S2 is high (reaching even 0.65 mg/L), nonetheless below the limit imposed by the Romanian law, which is 5 mg/L . The fact that in the beginning of the time interval, the concentration of Al+3 is high at two neighboring stations (S1 and S2) suggests that some localized discharge affecting both runaway and waste water, might have happened in the southern part of the city, which led to the increase of Al+3concentration in the collected wastewater. This is supported by the fact that the concentration gradually decreases at S2.

 

Figure 5: Daily variation of Al at all sites.

Figure 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Daily variation of Fe at all sites.

Figure 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Daily variation of Cd at all sites.

Figure 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variation of Fe+2 concentrations is shown in Figure 6. Fe+2 concentration is within the 0.07–0.4 mg/L interval, below 5.0 mg/L, which is the maximum accepted value of the Romanian law . Two higher values were observed at S2 and S4 (both with industrial component) during the third and fourth days of the monitoring campaign.

Besides Al+3 and Fe+2, concentrations of Cd+2 were determined and the variations at the five stations are shown in Figure 7. Cd+2 is a rare pollutant, originating from heavy industry. Leakages in the sewage systems can also lead to Cd+2. Except for two days, Cd+2 varies between 0.005 and 0.04 mg/L. The two high values of 0.11 mg/L were observed in the first and fourth days at S5, which collects industrial wastewater. However, Cd+2 concentrations do not exceed the maximum accepted values of the Romanian law [24] for the monitoring interval which is 0.2 mg/L.

3.5. Nutrients

Water systems are very vulnerable to nitrate pollution sources like septic systems, animal waste, commercial fertilizers, and decaying organic matter [37]. Important quantities of nutrients, which are impossible to be removed naturally, can be found in rivers and this leads to the eutrophication of natural water (like Danube River). As a result, an increase in the lifetime of pathogenic microorganisms is expected. Measurement of nutrient (different forms of nitrogen (N) or phosphorous (P)) variations in domestic wastewater is strongly needed in order to maintain the water quality of receptors [36]. Nitrogen by nitrate (Figure 8) and phosphorous by phosphate (Figure 9) are considered as representative for nutrients.

Figure 8: Daily variation of N-NO3 at all sites.

Figure 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Daily variation of P-PO4 at all sites.

Figure 9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 shows that N-NO3 concentrations vary, on the average, between 0 and 5.0 mg/L.

At all four stations with a domestic component, S1, S2, S3 and S4, the concentration of N-NO3 is low (between 0 and 1.5 mg/L) and the daily variation is relatively similar at all sites. Noticeable drops of the N-NO3 concentration are observed at all stations in the 8th day of the monitoring interval, coinciding with pH (Figure 2) and DO strong variations (Figure 4). This supports the conclusion that the heavy snowfall recorded at that period had an important impact on wastewater quality most likely due to the runoff joining the sewage system.

The behavior of N-NO3 clearly differs at station S5, which collects only industrial wastewater. Significantly higher values of N-NO3, ranging from 2.0 to 5.0 mg/L, were detected. However, the mean concentration of N-NO3 remained below the maximum concentration given by the Romanian law [24]. Obviously, if treatment stations have to be set up, the priority for this particular nutrient component should concentrate on stations where industrial wastewater is collected.

Another nutrient that was analyzed for our study was orthophosphate expressed by phosphorous. The P-PO4 concentration varies, on the average, between 1.0 and 6.0 mg/L (Figure 9). For this component, concentrations are higher at domestic stations, S1 and S3, than at the other three stations. P-PO4 is expected to increase in domestic wastewater because of food, more precisely meat, processing, washing, and so forth. The lowest values were observed at S5, which has a negligible domestic component. Peaks in the P-PO4 concentration are observed at S1. Interestingly enough, P-PO4 temporal variations correlated pretty well at stations S2, S4, and S5 (which collect industrial wastewater). Unlike most of the other analyzed compounds, for which the concentrations were within the accepted ranges, the maximum level of P-PO4 is exceeded at all five collectors. Both Romanian law  and the European law  stipulate 2.0 mg/L total phosphorous for 10000–100000 habitants, and for more than 100000 habitants (as in Galati City’s case) 1.0 mg/L total phosphorus. Interestingly, domestic stations seem to require more attention with respect to the quality of water then industrial stations.

Our results regarding the variation and levels of the analyzed parameters are grouped below as the following.(1)The values of pH are within the accepted range for Danube, and their daily variations are relatively similar for both domestic and mixed wastewater. Significantly smaller pH values were measured in the wastewater with a high industrial load. A clear minimum was observed at all sites in the 8th day of the monitoring period, when a heavy snowfall took place. One could speculate that the snowfall, which has an acidic character, might have affected the pH of the wastewater through “run off” phenomena. However, a clear connection cannot be established relying on one event only.(2)The COD level clearly depends on the type of wastewater. Higher values were observed for domestic wastewater, while “pure” industrial wastewater has the lowest COD. This might be explained by the fact that industrial wastewater benefits from some treatment before being discharged into the city sewage system. However, COD does exceed the maximum accepted values according to the Romanian law [24] at all sites thus additional treatment is required at all stations.(3)Concentrations of all analysed metals, Al+3, Cd+2 and Fe+2, are within the limit of the Romanian law. No association with the type of wastewater could be inferred. Isolated peaks could not be linked with any specific polluting factors, except for Cd+2, for which accidental concentration increases are observed for pure industrial wastewater.(4)The level of P-PO4, one of the two nutrients that were analyzed, was high at all stations; however, the highest concentrations are associated with domestic loads.(5)Opposingly, the N-NO3 level is the highest, by far, in wastewater with a high industrial contribution.

3.6. Possible Relationships between Various Parameters

The experimental results have shown that some parameters might be related and that their behavior greatly depends on the type of collected wastewater. Differences between the behavior of physico-chemical parameters at the domestic sites (S1 and S3), on one hand, and at the other sites, on the other, was observed. Pearson correlation coefficients have been calculated between all parameters at all the selected five sites and corresponding significances. Although most of correlations were not significant, some interesting connections between various parameters at sites with similar characteristics were revealed. Table 2 shows correlation coefficients between various parameters for all five stations. Significant correlations at different types of stations are denoted as follows: italicized fonts for domestic stations, boldface italicized fonts for the industrial station and boldface fonts for mixed stations.

Table 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Correlation coefficients calculated for station S1 to S5. Significant correlations at each type of stations are identified as follows: boldface italicized fonts for industrial station (S5), italicized fonts for domestic stations (S1 and S3) and boldface fonts for mixed stations (S2 and S4).

An important relationship seems to exist between pH and N-NO3 at all stations except for the industrial wastewater collecting site, S5 (i.e., at all stations collecting wastewater resulting from domestic activities). Similarly, pH correlates well with DO at all stations except the industrial one.

COD correlates with two metals, Cd+2 and soluble Fe+2, which is expected [30], but only at S1 and S3, where the daily variations of the concentration for these two metals (Cd+2 and soluble Fe+2) were similar.

No conclusion can be drawn for the industrial wastewater collector that was analyzed, where both positive and negative correlations were observed. The lack of correlation between the two metals and COD at the industrial wastewater collectors suggests that other processes, that alter the chemical equilibrium between the two chemical compounds, must be taken into account. For example some metals are complexed by organic compounds that are present in the water and the pH values can influence these phenomena.

DO correlates with pH and N-NO3 at all four sampling stations with domestic component (S1–S4) but the relationship vanish at S5 (industrial). There is also a negative correlation between DO and Fe+2 and Cd+2 only for domestic wastewater, which is expected because of the natural oxidation of metals. The correlation vanishes at the other three stations which collect wastewater from industrial areas.

Heavy metals, Fe+2 and Cd+2 correlate only at domestic stations and no relationships can be defined to link the concentration of Al+3 with other components.

The P-PO4 variation is linked to the variation of soluble Fe+2 at the two stations that collect domestic wastewater. Interestingly, these two elements exist together in reductive domestic systems because these are dominated by proteins, lipids, degradation products. This relationship disappears at the other stations, where the industrial load is significant. The other metals, Al+3, seems to be linked with P-PO4at stations S5 and S2, which collect wastewater with the highest industrial load. No link is observed for the rest of stations and for Cd+2 which can be explained by a higher probability of iron (II) orthophosphate to form in wastewater compared to Al+3 or Cd+2 orthophosphates.

Positive correlations can also be seen between P-PO4 and COD for all sampling sites except S1, where the relationship is still positive but less significant. The other nutrient, N-NO3, is anticorrelated with COD but only at S3 and is well correlated with pH and DO at all four stations with domestic component. The only exception is station S5, which collects mostly industrial wastewater.

Concluding, positive correlations were observed between the following parameters.(1)pH and N-NO3 everywhere except “purely” industrial water.(2)COD and soluble Fe+2 at domestic stations.(3)DO and pH, on the one hand, and DO and N-NO3 at domestic stations.(4)P-PO4 and soluble Fe+2 at domestic stations.(5)P-PO4 and COD everywhere, which, taking into account the high level of P-PO4 at domestic stations, might suggest that one important contributor to water quality degradation are household discharges.(6)Al+3 and P-PO4.

4. Conclusions

In the present paper we have analyzed the daily variation of several physico-chemical parameters of the wastewater (pH, COD, DO, Al+3, Fe+2, Cd+2, N-NO3, and P-PO4) at five collectors that have been characterized as domestic, industrial and mixed, according to the type of collecting area. Different results have been obtained for domestic and industrial wastewater. Most of the chemical parameters are within accepted ranges. Nevertheless, their values as well as their behavior depend significantly on the type of collected wastewater.

The overall conclusion is that wastewater with a high domestic load has the highest negative impact on water quality in a river. On the other hand, industrial wastewater brings an important nutrient load, with potentially negative effect on the basins where it is discharged. Our results suggested that meteorological factors (snow) might modify some characteristics of wastewater, but a clear connection cannot be established relying on one event only.

Significantly smaller pH values were measured in the wastewater with a high industrial load. The COD level clearly depends on the type of wastewater. Higher values were observed for wastewater with domestic sources, while “pure” industrial wastewater has the lowest COD. This might be explained by the fact that industrial wastewater benefits from some treatment before being discharged into the city sewage system. COD does exceed the maximum accepted values according to the Romanian law at all sites thus additional treatment is required at all stations. Accidental increases of Cd+2 concentrations are observed for pure industrial wastewater. The highest concentrations of P-PO4 are associated with domestic loads. Opposing, the N-NO3 level is clearly the highest in wastewater with a high industrial contribution.

Correlation analysis has been used in order to identify possible relationships between various parameters for wastewater of similar origin.

Positive correlations between various physico-chemical parameters exist for the domestic wastewater (DO, pH and N-NO3, on the one hand, and P-PO4, COD and soluble Fe+2, on the other hand). Except for two cases, these relationships break when the industrial load is high. Some of the existing correlations are expected as discussed above, thus any removal treatment should be differentiated according to the type of collector, before discharging it into the natural receptors in order to be costly efficient. Correlations between DO and COD and nutrient load suggest that the most important threat for natural basins in the studied area, are domestic sources for the wastewater.

The different percentages of industrial and domestic collected wastewater vary at each station, which has a clear impact on concentrations of the selected chemical components. Our results show that domestic wastewater has a higher negative impact on water quality than wastewater with a high industrial load, which, surprisingly, seems to be cleaner. This might be related to the fact that most industries are forced, by law, to apply a pretreatment before discharging wastewater into the city sewage system. Industrial wastewater affects the nutrient content of natural water basins. Although the time period was relatively short, our study identified specific requirements of chemical treatment at each station. An efficient treatment plan should take into account the type of wastewater to be processed at each station. Results presented here are linked with another research topic assessing the level of water quality in the lower basin of the Danube before and after implementing the complete biochemical treatment plants.

Acknowledgment

The work of Catalin Trif was supported by Project SOP HRD-EFICIENT 61445/2009.

Copyright © 2012 Paula Popa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited – original found here: http://www.hindawi.com/journals/tswj/2012/549028/

 

 

Categories : Case Studies & Application Stories, Science and Industry Updates