Ultrapen PT2 pH Tester Features: MyronLMeters.com

Posted by 3 Apr, 2014

TweetThe ULTRAPEN™ PT2 pH Pen is designed to be extremely accurate, fast and simple to use in diverse water quality applications. Advanced features include automatic temperature compensation; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. A true one- handed instrument, the PT2 is easy to calibrate and easy to use. To take a measurement, […]

The ULTRAPEN™ PT2 pH Pen is designed to be extremely accurate, fast and simple to use in diverse water quality applications. Advanced features include automatic temperature compensation; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. A true one- handed instrument, the PT2 is easy to calibrate and easy to use. To take a measurement, you simply push a button then dip the pen in solution. Results display in seconds.

FEATURES
1. Push Button — turns instrument on; selects mode and unit preferences.
2. Battery Cap — provides access to battery for replacement.
3. Pocket Clip — holds pen to shirt pocket for secure storage.
4. Battery Indicator — indicates charge left in battery.
5. Display — displays measurements, menu options, battery indicator, and firmware revision (during power-up).
6. LED Indicator Light — indicates when to dip instrument in solution, when measurement is in progress, and when to remove instrument from solution.
7. pH Sensor — measures hydrogen ion concentration of solution.
8. Soaker Cap — contains a sponge soaked with pH Sensor Storage Solution to maintain sensor hydration. To remove, twist the soaker cap while pulling off. To replace, fill the soaker cap with storage solution just until the sponge is covered. Pour out any excess solution. Twist the soaker cap while pushing back on.
CAUTION: Do NOT overfill the soaker cap as solution can squirt out while you are pushing the cap back on.
9. Scoop — used to hold sample solution when dipping is not possible. To install, push the scoop onto the sensor
while shifting side-to-side. To remove, pull the scoop off while shifting side-to-side. Verify the pH sensor remained fully inserted into the PT2. If not, reinstall per pH Sensor Replacement, p. 5. To use, pour solution into the scoop or hold the scoop directly under a vertical stream to collect sample.
10. Holster — run your belt through the strap in the back of the holster for hands-free portability.
11. Lanyard — attach through hole in top of pocket clip.

SPECIFICATIONS
pH Temperature
Range: 0.00-14.00pH 0-71°C/32-160°F
Accuracy: ± 0.01pH (After Wet Calibration) ±0.1ºC/±0.1ºF
Repeatability: ± 0.01pH ±0.1ºC/±0.1ºF
Resolution: 0.01pH 0.1ºC/0.1ºF
Time to Reading Stabilization: 10-30 seconds
Power Consumption: Active Mode 37mA, Sleep Mode 2µA
Temperature Compensation: Automatic to 25ºC
Physical Dimensions: 17.15cm L x 1.59cm D or 6.75in. L x 0.625in. D
Weight: 54g/1.9oz. (without soaker cap and lanyard)
Case Material: Anodized Aircraft Aluminum with Protective Coating
Battery Type: N type, Alkaline, 1.5V
Calibration Solutions: pH4, pH7, pH10
Operating/Storage Temperature: 0-55ºC or 32-131ºF
Enclosure Ratings: IP67 and NEMA6
EN61236-1: 2006 – Annex A: 2008: Electrostatic discharge to case of instrument may cause PT2 to spontaneously power on. If this happens, the PT2 will power itself off within seconds.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT2 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Product Updates

Myron L Meters for Hydroponics: MyronLMeters.com

Posted by 5 Sep, 2013

TweetFeatures • Handheld meters measure TDS and/or pH • Monitor measures TDS • All instruments are easy to operate and calibrate • High degree of accuracy • Immediate results • Kit comes with solutions required to calibrate • Temperature compensated readings TDS Monitoring The nutrient solution and its management are the foundation of a successful […]

Features

• Handheld meters measure TDS and/or pH
• Monitor measures TDS
• All instruments are easy to operate and calibrate
• High degree of accuracy
• Immediate results
• Kit comes with solutions required to calibrate
• Temperature compensated readings

TDS Monitoring

The nutrient solution and its management are the foundation of a successful hydroponics system. The function of a hydroponics nutrient solution is to supply the plant roots with water, oxygen and essential mineral elements in soluble form.

A test of the Total Dissolved Solids (TDS) using the DS Meter or pDS Meter or continuous monitoring with the HYDRO-STIK gives the grower accurate measurements of the concentration of nutrients in solution. If the concentration drops below the optimum level required to sustain and grow the plants, add more nutrient- rich solution until the desired concentration level is achieved. This prevents haphazard dosing and wasted solution, which minimizes costs to the grower.

pH Monitoring

pH of the nutrient solution is also critical to successful plant growth. All elements have a specific solubility pH range. This means that mineral elements dissolve and can become more concentrated in solution within certain pH ranges. Roots absorb only the dissolved nutrients, so this is critical to plant growth.
The TH1H and the pDS Meter quickly and easily measure pH.

Monitoring the addition of a pH balancing solution with the proper meter lets the grower precisely adjust the pH level.

Beyond affecting nutrient availability, extremely low or high pH can even damage or kill plants.

All Myron L TDS and pH meters give lab-accurate results in the field.

All Myron L meters use advanced Temperature Compensation (TC) circuitry and equations to give you the best TC correction available.

Ultrapen PT2 pH and Temperature Pen

Ultrapen PT2 pH and Temperature Pen

Ultrapen PT1 TDS Pen

Ultrapen PT1 TDS Pen

T6/pH TDS and pH Meter

T6/pH TDS and pH Meter

Techpro II - TPH1 TDS, pH, Conductivity, Temperature

Techpro II – TPH1 TDS, pH, Conductivity, Temperature

PSTK Soil Test Kit

PSTK Soil Test Kit

 

 

Categories : Application Advice

Testing Hydroponics System’s Nutrient Solution – MyronLMeters.com

Posted by 3 Apr, 2013

TweetTDS meter Whether or not you’re a newcomer to hydroponic growing, keeping your hydroponic system’s nutrient solution properly balanced with a satisfactory nutrient concentration can be tough. Regular testing of one’s t solution is required if you want to keep the hydroponic system balanced and your plants healthy and growing. The simplest way to keep […]

TDS meter

Whether or not you’re a newcomer to hydroponic growing, keeping your hydroponic system’s nutrient solution properly balanced with a satisfactory nutrient concentration can be tough. Regular testing of one’s t solution is required if you want to keep the hydroponic system balanced and your plants healthy and growing. The simplest way to keep your nutrient solution balanced is via testing. You must check your solution’s pH level and nutrient concentration no less than every couple of days. To be able to try out your solution you need a few basic devices. You need to get a trusted pH tester and either an overall total Dissolved Solids (TDS) meter or perhaps a Conductivity (EC) meter.

pH tester

It is generally agreed that the pH of one’s nutrient solution should be kept slightly acidic using a pH range of 5.5-6.0. You will find exceptions for this generalization. If you are unsure what are the best pH range is for the plants you might be growing, there are many resources open to guide you. You can find three basic means of testing pH. The least expensive technique is paper testing strips. They’re simple to use but could be difficult to learn. Typically the most popular testing way is liquid test kits. This method is extremely accurate and easier to see than paper testing strips but it is also more expensive. An electronic digital pH meter may be the last available option. Digital pH meters are available in various shapes, sizes, and price ranges. The benefit of an electronic pH meter is that it can be really user friendly, fast, and accurate. However, they are the most costly of the testing options, they can break easily, plus they has to be calibrated frequently if you’d like them to remain accurate.

TDS tester

Both conductivity meters and TDS meters are used to look at the strength, or concentration, of your hydroponic nutrient solution. Even though it is crucial that you know the concentration of your solution, this is because measurements ought to be used being a guideline only. EC meters will almost always be measured much the same way. Two sensors they fit within the solution being tested along with a little bit of electricity is emitted by one sensor and received by the other sensor. How well the electricity travels is then based on the EC meter. The harder electricity conducted, the greater the power of solids in the solution. A TDS meter uses the EC after which calculates the amount of solids inside the solution according to among three conversion factors. Considering that the TDS is dependant on a calculation, it really is only a quote of solids in the nutrient solution.

With this particular basic comprehension of the main difference between TDS and conductivity meters you can determine which measurement process is best for you. When you use a packaged nutrient solution, browse the product label to learn which kind of meter the maker recommends. In the event the manufacturer recommends a TDS, they’ll also inform you which conversion step to use as well as the recommended concentration range for his or her product. If you use a homemade nutrient solution plus a TDS meter, a great general guideline is to keep your TDS between 800 and 1200 ppm (ppm). If you work with an EC meter to test your homemade nutrient solution, a good range is 1.0 to 3.0 mS/cm (milisiemens per centimeter).

This information will help keep your hydroponics nutrient solution balanced and your plants healthy.

Myron L Meters has the perfect solution for hydroponics testing – the Ultrapen Combo.

ULTRACOMBO – ULTRAPEN PT1  Conductivity – TDS – Salinity pen & PT2  – pH – Temp Pen

Accuracy of +/-1% of READING (+/-.2% at Calibration Point)
Accuracy of +/- 0.01 pH
Reliable Repeatable Results
Solution modes: KCl, NaCl and 442
Automatic Temperature Compensation
Autoranging
Durable, Fully Potted Circuitry
Comes with 2oz bottle of pH Storage Solution
Waterproof

Ultrapen Combo

List Price: $318.00 

Exclusive Online Price: $280.50

http://www.myronlmeters.com

 

 

 

 

 

 

 

Material Shared via Creative Commons Attribution-Share Alike 2.5 Croatia, original found here: http://blog.dnevnik.hr/nathanielwhite566668/2012/02/1629933596/tds-meter.html

 

 

 

 

Categories : Application Advice, Case Studies & Application Stories, Technical Tips

Buying and Using a pH Meter for Food Processing – MyronLMeters.com

Posted by 2 Oct, 2012

TweetWhat is pH and why do I need to measure it? pH measures the amount of acidity or alkalinity in a food or solution using a numerical scale between  1 and 14. A pH value of 1 is most acidic, a pH value of 7 is neutral, and values above 7 are referred to as […]

What is pH and why do I need to measure it?

pH measures the amount of acidity or alkalinity in a food or solution using a numerical scale between  1 and 14. A pH value of 1 is most acidic, a pH value of 7 is neutral, and values above 7 are referred to as basic or alkaline. Acidified foods have a pH value less than or equal to 4.6. The proper pH of a canned food product can be critical to ensuring the safety of the product. It is very important that pH testing be done correctly and accurately.

How is pH measured?

If you process acidified foods, you will be required to monitor the pH of the product that you produce. Depending on the pH of the product, you may be able to use paper pH strips (often referred to as litmus paper), or required to use a pH meter. Paper strips that measure pH rely on a color change in the paper to indicate product pH. Paper strips can be used to measure pH if the product pH is less than 4.0. Paper strips are an inexpensive way to test pH, but can be inaccurate or difficult to read. A pH meter measures the amount of hydrogen-ion (acid) in solution using a glass electrode immersed in the solution. A pH meter must be used when product pH is greater than, or equal to, 4.0. If you are canning acidified foods, accurately monitoring and recording the product pH is key to knowing that you are selling a safe product.

What is equilibrium pH?

Equilibrium pH is the pH of a food product after the added acid has reached throughout the food; the pH of the acid brine and the food that have equilibrated.  When you monitor pH as part of process monitoring, it is the equilibrium pH that you are measuring. For a proper pH reading, you should test the pH of the product roughly 24 hours after processing, once the jars have cooled to room temperature and stabilized. Do not take the pH of a product just before or right after canning because it will not be an accurate measure of the equilibrium pH.

What should I look for if I need to purchase a pH meter?

If you are required to check your product pH with a meter, there are several things to consider.

Accuracy. Accuracy is listed as a range of +0.XX pH units. This means that the meter may read so many pH units above or below the actual pH of the product. Purchase a pH meter with an accuracy of +0.02 units or better. For instance, a pH meter with an accuracy of

+0.01 is a good choice. A pH meter with an accuracy of +0.10 is not a good choice, it is not accurate enough for all products.

Calibration.

All pH meters must be calibrated (checked against a known standard) to assure accuracy. Standards are colored liquids of known pH. Buy a meter that uses at least a 2-point calibration; for acidified foods you will calibrate your meter with pH 4.0 and 7.0 buffers.

Electrode. The electrode is the part of the instrument that is immersed in solution. When considering which pH meter to purchase, consider the cost of replacement electrodes. Some  electrodes  have  special  non-clog  tips  and  these  may  be  useful  is  you  will  be measuring the pH of foods that are not easily blended.

Temperature. pH readings are affected by temperature. In order to get an accurate reading, the pH meter must be calibrated at the same temperature as the samples being tested. More expensive meters will compensate for variations in sample temperature (too warm or too cold). Myron L meters have automatic temperature compensation. If you can afford a meter with this feature, it’s nice to have.

What should I buy?

The cost of a pH meter ranges from under $100 to well over $500.  As a starting point, there are several styles that small food and beverage processors currently use.

Testing the Equilibrium pH of an Acidified Food Product

1.   Open one jar and take a representative sample of your food product once it has cooled, usually 12 to 24 hours after processing. You should sample each batch. Heating will drive the acid into your food product; sampling after processing (and cooling) will give you an accurate reading of the equilibrium pH.

2.   Strain the solids, draining out the liquid (brine) from the jar. Place the strained solids into a blender.

3.   Blend the product, adding distilled water if necessary, to produce a slurry. Added distilled water will not change the pH of the product and will allow for effective blending. You can purchase distilled water at many grocery stores or drug stores.

4.   Use a calibrated pH meter to measure pH.

The pH meter must be calibrated using at least 2-point calibration with pH 4.0 and 7.0 buffers. Myron L Meters recommends a three point calibration.

The pH meter must be calibrated each day that you use it. A pH meter must be used to monitor the pH of foods with an equilibrium pH greater than 4.0.

5.   Record the results in your batch log.

*Myron L meters are used by Tyson, Sara Lee, Gordon Food Service, Better Baked Foods, Schreiber Foods, Homestead Slow Foods, and others in the food

processing industry.

These are our two most popular handheld pH meters:

Ultrapen PT2

 

 

 

 

 

 

https://www.myronlmeters.com/Ultrapen-PT2-Multiparameter-Meter-p/dh-up-pt2-ss.htm

ULTRAPEN PT2 pH and Temperature Pen

Accuracy of +/- 0.01 pH

Reliable Repeatable Results

Easy Calibration

Automatic Temperature Compensation

Measures Temperature

Durable, Fully Potted Circuitry

Waterproof

Comes with 2oz bottle of pH Storage Solution

 

 

 

 

 

 

 

Ultrameter II – 6PII

http://www.myronlmeters.com/Ultrameter-II-6P-Multiparameter-Meter-p/dh-umii-6pii.htm

Multi-Parameter: Conductivity, TDS, Resistivity, pH, ORP, Temperature, Free Chlorine (FCE)

+/-1% Accuracy of Reading

Memory Storage: Save up to 100 samples w/ Date & Time stamp

Wireless Download Module Optional

Waterproof

 

Categories : Application Advice, Case Studies & Application Stories, Technical Tips

pH and pH Meters – MyronLMeters.com

Posted by 24 Sep, 2012

TweetWhat is pH? pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions […]

What is pH?

pH measures the activity of the (solvated) hydrogen ion. Pure water has a pH very close to 7 at 25°C. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic or alkaline. The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Measuring pH for aqueous solutions can be done with a glass electrode and a pH meter, or using indicators.

Measuring pH is important in water treatment, medicine, biology, chemistry, agriculture, forestry, food science, environmental science, oceanography, civil engineering, chemical engineering, and many other applications.

p[H] was first introduced by Danish chemist Søren Peder Lauritz Sørensen at the Carlsberg Laboratory in 1909 and revised to the modern pH in 1924 to accommodate definitions and measurements in terms of electrochemical cells.  According to the Carlsberg Foundation pH stands for “power of hydrogen”.

pH is defined as the decimal logarithm of the reciprocal of the hydrogen ion activity, aH+, in a solution.

pH Meters

A pH meter is an electronic device used for measuring the pH (acidity or alkalinity) of a liquid (though special probes are sometimes used to measure the pH of semi-solid substances). A typical pH meter consists of a special measuring probe (a glass electrode) connected to an electronic meter that measures and displays the pH reading.

The probe

The pH probe measures pH as the activity of the hydrogen cations surrounding a thin-walled glass bulb at its tip. The probe produces a small voltage (about 0.06 volt per pH unit) that is measured and displayed as pH units by the meter. For more information about pH probe care or replacement, please consult your Myron L meter operations manual.

Calibration and use

*Please consult your Myron L meter operations manual before calibrating.

For very precise work the pH meter should be calibrated before each measurement. For normal use calibration should be performed at the beginning of each day. The reason for this is that the glass electrode does not give a reproducible e.m.f. over longer periods of time. Calibration should be performed with at least two standard buffer solutions that span the range of pH values to be measured. For general purposes buffers at pH 4 and pH 10 are acceptable. The pH meter has one control (calibrate) to set the meter reading equal to the value of the first standard buffer and a second control (slope) which is used to adjust the meter reading to the value of the second buffer. A third control allows the temperature to be set. Standard buffer solutions, which can be obtained from MyronLMeters.com here:

http://www.myronlmeters.com/pH-Buffer-Calibration-Solutions-s/82.htm

usually state how the buffer value changes with temperature. For more precise measurements, a three buffer solution calibration is preferred. As pH 7 is essentially, a “zero point” calibration (akin to zeroing a scale), calibrating at pH 7 first, calibrating at the pH closest to the point of interest ( e.g. either 4 or 10) second and checking the third point will provide a more linear accuracy to what is essentially a non-linear problem. Some meters will allow a three point calibration and that is the preferred scheme for the most accurate work, and is recommended by Myron L Meters. Higher quality meters will have a provision to account for temperature coefficient correction, and high-end pH probes have temperature probes built in. The calibration process correlates the voltage produced by the probe (approximately 0.06 volts per pH unit) with the pH scale. After each single measurement, the probe is rinsed with distilled water or deionized water to remove any traces of the solution being measured, blotted with a scientific wipe to absorb any remaining water which could dilute the sample and thus alter the reading, and then quickly immersed in another solution.

Storage conditions of the glass probes

When not in use, the glass probe tip must be kept wet at all times to avoid the pH sensing membrane dehydration and the subsequent dysfunction of the electrode. You can get your sensor storage solution here:

http://www.myronlmeters.com/pH-Storage-Solution-p/s-ssq.htm

A glass electrode alone (i.e., without combined reference electrode) is typically stored immersed in an acidic solution of around pH 3.0. In an emergency, acidified tap water can be used, but distilled or deionised water must never be used for longer-term probe storage as the relatively ionless water “sucks” ions out of the probe membrane through diffusion, which degrades it.

Combined electrodes (glass membrane + reference electrode) are better stored immersed in the bridge electrolyte (often KCl  3 M) to avoid the diffusion of the electrolyte (KCl) out of the liquid junction.

Cleaning and troubleshooting of the glass probes

Occasionally (about once a month), the probe may be cleaned using pH-electrode cleaning solution; generally a 0.1 M solution of hydrochloric acid (HCl) is used, having a pH of one.

In case of strong degradation of the glass membrane performance due to membrane poisoning, diluted hydrofluoric acid (HF < 2 %) can be used to quickly etch (< 1 minute) a thin damaged film of glass. Alternatively a dilute solution of ammonium fluoride (NH4F) can be used. To avoid unexpected problems, the best practice is however to always refer to the electrode manufacturer recommendations or to a classical textbook of analytical chemistry.

Types of pH meters

A pH meter for every industry

pH meters range from simple and inexpensive pen-like devices to complex and expensive laboratory instruments with computer interfaces and several inputs for indicator and temperature measurements to be entered to adjust for the slight variation in pH caused by temperature. Specialty meters and probes are available for use in special applications, harsh environments, etc. Myron L Meters offers a simple pen-style pH meter, analog handheld meters, digital handheld multiparameter meters, and inline monitor/controllers.

Myron L Ultrapen PT2 pH and Temperature Tester

 

 

 

 

 

 

 

 

https://www.myronlmeters.com/Ultrapen-PT2-Multiparameter-Meter-p/dh-up-pt2-ss.htm

ULTRAPEN PT2 pH and Temperature Pen

Accuracy of +/- 0.01 pH

Reliable Repeatable Results

Easy Calibration

Automatic Temperature Compensation

Measures Temperature

Durable, Fully Potted Circuitry

Waterproof

Comes with 2oz bottle of pH Storage Solution

 

 

Myron L AG-6 TDS and pH meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Analog-pH-Conductivity-Meter-p/ah-ds-ag6-fslash-ph.htm

 

Agri-Meter – Ag-6: 0-5 millimhos; 2-12 pH

Instant and accurate TDS tests

Electronic Internal Standard for easy field calibration

Fast Auto Temperature Compensation

Rugged design for years of trouble-free testing

Simple to use

 

Myron L Ultrameter II 6P multiparameter meter

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Ultrameter-II-6P-Multiparameter-Meter-p/dh-umii-6pii.htm

 

 

Multi-Parameter: Conductivity, TDS, Resistivity, pH, ORP, Temperature, Free Chlorine (FCE)

+/-1% Accuracy of Reading

Memory Storage: Save up to 100 samples w/ Date & Time stamp

Wireless Download Module Optional

Waterproof

 

Myron L 723II digital inline pH monitor/controller

 

 

 

 

 

 

 

 

 

http://www.myronlmeters.com/Inline-pH-Digital-Monitor-Controller-p/i-dmc-723ii.htm

 

The advanced “isolated” circuitry of the 720 Series II pH/ORP Monitor/ controllers guarantees accurate and reliable measurements — completely eliminating ground-loop and noise issues.

 

The unique sensor preamp allows for longer distances between the sensor and the Monitor/controller without the loss of accuracy or reliability.

 

All Myron L Monitor/controllers feature a highly refined and precise Temperature Compensation circuit. This feature perfectly matches the NERNST equation correcting the displayed reading to 25’C. The TC may be disabled to conform to USP requirements.

 

 

Categories : Product Updates, Science and Industry Updates