Screening and evaluation of innate coagulants for water treatment: a sustainable approach –

Posted by 21 Mar, 2013

TweetAbstract Access to safe drinking water is important as a health and development issue at national, regional, and local levels. About one billion people do not have healthy drinking water. More than six million people (about two million children) die because of diarrhea which is caused by polluted water. Developing countries pay a high cost […]


Access to safe drinking water is important as a health and development issue at national, regional, and local levels. About one billion people do not have healthy drinking water. More than six million people (about two million children) die because of diarrhea which is caused by polluted water. Developing countries pay a high cost to import chemicals including polyaluminium chloride and alum. This is the reason why these countries need low-cost methods requiring low maintenance and skill. The use of synthetic coagulants is not regarded as suitable due to health and economic considerations. The present study was aimed to investigate the effects of alum as coagulant in conjunction with bean, sago, and chitin as coagulants on the removal of color, turbidity, hardness, and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The study was taken up in three stages, initially with synthetic waters, followed by testing of the efficiency of coagulants individually on surface waters and, lastly, testing of blended coagulants. The experiment was conducted at three different pH conditions of 6, 7, and 8. The dosages chosen were 0.5, 1, 1.5, and 2 mg/l. The results showed that turbidity decrease provided also a primary E. coli reduction. Hardness removal efficiency was observed to be 93% at pH 7 with 1-mg/l concentration by alum, whereas chitin was stable at all the pH ranges showing the highest removal at 1 and 1.5mg/l with pH 7. In conclusion, using natural coagulants results in considerable savings in chemicals and sludge handling cost may be achieved.


Alum; Chitin; Sago; Bean; Coagulation; Turbidity


The explosive growth of the world’s human population and subsequent water and energy demands have led to an expansion of standing surface water [1]. Nowadays, the concern about contamination of aquatic environments has increased, especially when water is used for human consumption. About one billion people do not have healthy drinking water. More than six million people (about two million children) die because of diarrhea which is caused by polluted water[2,3].

In most of the cases, surface water turbidity is caused by the clay particles, and the color is due to the decayed natural organic matter. Generally, the particles that determine the turbidity are not separated by settling or through traditional filtration. Colloidal suspension stability in surface water is also due to the electric charge of particle surface. Thus, there is great importance in either the development of more sophisticated treatments or the improvement of the current ones [4].

The production of potable water from most raw water sources usually entails the use of a coagulation flocculation stage to remove turbidity in the form of suspended and colloidal material. This process plays a major role in surface water treatment by reducing turbidity, bacteria, algae, color, organic compounds, and clay particles. The presence of suspended particles would clog filters or impair disinfection process, thereby dramatically minimizing the risk of waterborne diseases [5,6].

Many coagulants are widely used in conventional water treatment processes, based on their chemical characteristics. These coagulants are classified into inorganic, synthetic organic polymers, and natural coagulants [4]. Alum has been the most widely used coagulant because of its proven performance, cost effectiveness, relatively easy handling, and availability. Recently, much attention has been drawn on the extensive use of alum. Aluminum is regarded as an important poisoning factor in dialysis encephalopathy. Aluminum is one of the factors which might contribute to Alzheimer’s disease [7-9]. Alum reaction with water alkalinity reduces water pH and its efficiency in cold water [10,11]. However, some synthetic organic polymers such as acrylamide have neurotoxicity and strong carcinogenic effect [8,12].

In addition, the use of alum salts is inappropriate in some developing countries because of the high costs of imported chemicals and low availability of chemical coagulants [3]. This is the reason why these countries need low-cost methods requiring low maintenance and skill.

For these reasons, and also due to other advantages of natural coagulants/flocculants over chemicals, some countries such as Japan, China, India, and the United States have adopted the use of natural polymers in the treatment of surface water for the production of drinking water [13]. A number of studies have pointed out that the introduction of natural coagulants as a substitute for metal salts may ease the problems associated with chemical coagulants.

Natural macromolecular coagulants are promising and have attracted the attention of many researchers because of their abundant source, low price, multi-purposeness, and biodegradation[11,14,15]. Okra, rice, and chitosan are natural compounds which have been used in turbidity removal [16-18]. The extract of the seeds has been mentioned for drastically reducing the amount of sludge and bacteria in sewage [19].

In view of the above discussion, the present work has been taken up to evaluate the efficiency of various natural coagulants on the physico-chemical contaminant removal of water. To date, most of the research has been concentrated on the coagulant efficiencies in synthetic water, but in this study, we move ahead making an attempt to test the efficiency of the natural coagulants on surface water. The efficiencies of the coagulants as stated by [20] might alter depending on many factors: nature of organic matter, structure, dimension, functional groups, chemical species, and others.


Natural coagulants and their preparation

Sago is a product prepared from the milk of tapioca root. Its botanical name is ‘Manihot esculentaCrantz syn. M. utilissima’. Hyacinth bean with botanical name Dolichos lablab is chosen as another coagulant. Both the coagulants were used in the form of powders (starches). Starch consists mainly of a homopolymer of α-D-glucopyranosyl units that comes in two molecular forms, linear and branched. The former is referred to as amylose and the latter as amylopectin [21]. These have the general structure as per [22] (Figure  1) .

thumbnailFigure 1. General structure of amylose and amylopectin.

The third coagulant was chitin ([C8H13O5N]n), which is a non-toxic, biodegradable polymer of high molecular weight. Like cellulose, chitin is a fiber, and in addition, it presents exceptional chemical and biological qualities that can be used in many industrial and medical applications. The two plant originated coagulants were taken in the form of powder or starch. Chitin was commercially procured.

Stage I

The first stage included testing the efficiency of the four coagulants on the synthetic waters. Synthetic waters with turbidity of 70 and 100 nephelometric turbidity units (NTU) were prepared with fuller’s earth in the laboratory and were used in this part of the study. The experiment was carried out using a jar test apparatus. The experiments were conducted in duplicates to eliminate any kind of error. Efficiency was evaluated by determination of reduction in turbidity of both the synthetic samples.

Stage II

In the second stage of the experiment, the individual coagulants were evaluated for their efficiency on the surface waters. The water samples for this stage and the preceding stage were collected from the surface reservoir, Mudasarlova, located at a distance of 5 km from the Environmental Monitoring Laboratory, GITAM University, where the experiments were carried out. This is the reservoir which serves as a source of domestic water for the nearby residents.

Care was taken while collecting the samples so that a representative sample is obtained. All samples were collected in sterile plastic containers. The samples were transported to the laboratory, and all the experiments were conducted within a duration of 24 h. The physical parameters like temperature and color were noted at the point of sample collection. The water samples were analyzed for the following parameters pre- and post-treatment with the coagulants (Table  1).

Table 1. Physico-chemical parameters tested (stage II)

The coagulants were tested at various concentrations like 0.5, 1, 1.5, and 2 mg/l at three pH ranges of 6, 7, and 8.

Stage III

The results obtained from the second stage of the study have encouraged us to further extend the study in terms of blended coagulants. The blending of coagulants was taken up from the fact that alum was the most widely used coagulant, and hence, it was taken as one part. The remaining combinations were 2, 3, 4, and 5 parts of the natural coagulants, i.e., 1:2, 1:3, 1:4, and 1:5.

Testing of the following parameters was adopted for evaluating the efficiency of the blended coagulants (pre- and post-coagulation) (Table  2). All the analysis has been performed as per the standard methods given by APHA, 2005 [23].

Table 2. Physico-chemical parameters tested (stage III)

E. coli presence

The E. coli bacterial presence and absence were determined in the pre- and post-coagulated water using H2S strip bottle. The water sample was filled into the bottle and allowed to stand for 24 h at room temperature. After 24 h, the water sample was observed for color change; black color change indicates the presence of E. coli.


Coagulant actions onto colloidal particles take place through charge neutralization of negatively charged particles. If charge neutralization is the predominant mechanism, a stochiometric relation can be established between the particles’ concentration and coagulant optimal dose.

In the initial stage of the experiment, the coagulants were tested against synthetic turbid samples with 70 and 100 NTU. According to Figure  2a,b, the optimum dosage of alum was observed to be 1mg/l for both the turbid samples, and the optimum pH is observed to be 7.

thumbnailFigure 2. Turbidity removal efficiency of alum with initial turbidities of (a) 100 and (b) 70 NTU.

It is understood from Figure  3a,b that the optimum dosage for chitin as coagulant is 1.5 mg/l (turbidity to 40 NTU) for 100 NTU, whereas not much difference was observed between pH 7 and 8 for both the turbid samples. The optimum pH is observed to be 7 for both 70 and 100 NTU samples.

thumbnailFigure 3. Turbidity removal efficiency of chitin with initial turbidities of (a) 100 and (b) 70 NTU.

Figure  4a,b exemplifies the trends of sago on the turbidity removal of the synthetic solutions. It is observed that sago was effective at both 1 and 1.5 mg/l (turbidity reduced to 50 and 45 NTU, respectively) for 100 NTU solution, and the efficiency was stable at pH 7 and 8.

thumbnailFigure 4. Turbidity removal efficiency of sago with initial turbidities of (a) 100 and (b) 70 NTU.

Figure  5a,b illustrates the effect of bean on the synthetic turbid samples and turbidity removal. It is observed that bean was effective at 1mg/l (turbidity reduced to 55 NTU) for 100 NTU solution, and the efficiency was stable at pH 7 and 8.

thumbnailFigure 5. Turbidity removal efficiency of bean with initial turbidities of (a) 100 and (b) 70 NTU.

Implications from the stage 1 experiment articulate that the coagulants are quite stable at the pH ranges tested; hence, in the proceeding experiments, all the three pH ranges were considered. In the second stage of experiment, the environmental samples from the surface water source were collected and tested for the removal of turbidity and other chemical parameters. The dosages were the same as the previous stage. The results are graphically represented as shown in Figures  67,89.

thumbnailFigure 6. Turbidity removal efficiency of individual coagulants.

thumbnailFigure 7. Total hardness removal efficiency of individual coagulants.

thumbnailFigure 8. Calcium hardness removal efficiency of individual coagulants.

thumbnailFigure 9. Chloride removal efficiency of coagulants.

The turbidity removal efficiencies of the individual coagulants are depicted in Figure  6 wherein there was a broad variation among the pH ranges. The maximum reduction was observed with 1 mg/l (87%) of bean at pH 6 followed by 1 mg/l (82%) sago at the same pH. At pH 7, the maximum efficiency was shown by bean with 1.5 mg/l dosage (85.37%) followed by bean and sago with 1 (82.49%) and 1.5 mg/l (82.49%), respectively. Removal efficiencies of 41.46% and 36.59% were reported by 1 mg/l of bean and sago, respectively, at pH 8. The minimum reductions are not reported as there was a negative competence of the coagulants at different doses and pH variations. It can be observed from the graph that there was an increase in the turbidity of the water at these dosages like with 2 g of chitin the turbidity removal was −19.51. In the entire study, the best results were obtained with total hardness removal wherein no negative competence was reported as shown in Figure  7. The utmost removal was observed with 0.5-mg/l (97.67%) sago at pH 7. At pH 6, it was (90.70%) with 1.5 mg/l of bean. At pH 8, the reduction was (93.02%) with 0.5 mg/l of alum. Apart from these, the general observation was that all the coagulants were effective in an average removal of 65% total hardness at all pH variations and doses. The tracking for the least efficiency has showed chitin at pH 6 with 2-mg/l dose (34.88%).

The calcium hardness removal efficiencies are directly proportional with the total hardness removal; the highest removal was recorded by chitin (93.33%) at pH 7 with 1.5-mg/l dose as shown in Figure  8. Removal of 90% is at pH 8 and 7 with 0.5-mg/l alum and 1-mg/l chitin, respectively. Minimum effectiveness was observed by chitin (6.67%) at pH 6 with 2-mg/l dose. On an average, the removal competence was more than 60% with all coagulants at doses at all the pH conditions.

Figure  8 illustrates the chloride removal efficiency of the coagulants tested. The average competence was observed to be 40%. The maximum competence was noted at pH 7 by chitin (83.64%) at 1.5 mg/l followed by sago (81.82%) at 1 mg/l. Indeed at pH 7, the removal was observed to be superior as a whole. Similarly, pH has shown inferior effectiveness in the amputation of chloride. The remarkable point that was noted is that at pH 8, where the removal was superior, the increase in doses of sago and bean (1.5 and 2 mg/l) has shown a depressing outcome.

With the results obtained from the second stage experimentation, the study was carried forward for the evaluation of blended coagulants. From the literature, it was understood that blended coagulants show improved competence than that of the individual ones.

The regular test of turbidity was substituted with conductivity to establish a relation and test the difference with these parameters. The conductivity diminution was observed to be preeminent at the ratio of 1:2 of all the blended coagulants 26.12%, 26.00%, and 21.35% with alum/bean, alum/chitin, and alum/sago, respectively. The highest reduction was observed with alum/sago at pH 8 with 1:2 ratio (32.28%) (Figure  10).

thumbnailFigure 10. Conductivity removal efficiency of blended coagulants.

The total hardness reduction trend of the blended coagulants was recorded as follows: at pH 7, all combinations of alum/bean have resulted in negative competence. Amputation of 100% was observed with alum/chitin and alum/sago at 1:2 and 1:4 and 1:5 doses, respectively (Figure  11). The overall competence of the alum/chitin and alum/sago were registered to be more than 80%. The calcium hardness efficiencies of the blended coagulants were similar to that of the total hardness. The highest removal efficiency was shown by alum/chitin with 1:5 ratio at pH 7 (Figure 12).

thumbnailFigure 11. Total hardness removal efficiency of blended coagulants.

thumbnailFigure 12. Calcium hardness removal efficiency of blended coagulants.

As said earlier, the turbidity was replaced by color determination taking into account the fact that turbidity is directly related to the color. pH 7 has been remarkably effective in the highest removal of color from the water. The blended coagulant alum/sago was found to be very effective with 98% to 100% reduction in color at all the ratios of dosage (Figure  13). The blended coagulants alum/chitin and alum/sago were relatively successful at an average rate of 80% decline in the color at almost all ratios of dosage at pH 7 and 8.

thumbnailFigure 13. Color removal efficiency of blended coagulants.

Alum/sago blend has a noteworthy effect on the removal of chloride from the water samples in which no negative result was noted. The highest reduction was observed with alum/chitin with dose of 1:5 (85.71%) at pH 7. Indeed, pH 7 can be optimized as perfect pH for this blend as all the ratios of dosages were quite efficient in the removal of chloride (Figure  14).

thumbnailFigure 14. Chloride removal efficiency of blended coagulants.


Although many studies have used synthetic water in the experiments, this work chose to use raw water collected directly from the surface source. Therefore, it is important to consider that the natural compounds may cause variations in their composition, which interfere in the treatment process. All those factors are taken into account when evaluating the obtained results.

The characteristics of the superficial water used in this study are observed as that the water used has apparent color, turbidity, solids, and amount of compounds with a relatively high absorption in UV (254 nm). It is noticeable that the water has high turbidity and color.

The effectiveness of alum, commonly used as a coagulant, is severely affected by low or high pH. In optimum conditions, the white flocs were large and rigid and settled well in less than 10 min. This finding is in agreement with other studies at optimum pH [24,25]. The optimum pH was 7 and was similar to the obtained results by Divakaran [26]. At high turbidity, a significant improvement in residual water turbidity was observed. The supernatant was clear after about 20-min settling. Flocs were larger and settling time was lower. The results showed that above optimum dosage, the suspensions showed a tendency to restabilize.

The effectiveness of the chitin in the present study in the removal of various contaminants with varied pH individually and also in blended form can be traced to the explanation from the literature that chitin has been studied as biosorbent to a lesser extent than chitosan; however, the natural greater resistance of the former compared to the last, due to its greater crystallinity, could mean a great advantage. Besides, the possibility to control the degree of acetylation of chitin permits to enhance its adsorption potential by increasing its primary amine group density. Recent studies regarding the production of chitin-based biocomposites and its application as fluoride biosorbents have demonstrated the potential of these materials to be used in continuous adsorption processes. Moreover, these biocomposites could remove many different contaminants, including cations, organic compounds, and anions [27].

Chitosan has high affinity with the residual oil and excellent properties such as biodegradability, hydrophilicity, biocompability, adsorption property, flocculating ability, polyelectrolisity, antibacterial property, and its capacity of regeneration in many applications [28]. It has been used as non-toxic floccules in the treatment of organically polluted wastewater [29].

The effects of coagulation process on hardness are observed for varying levels of hardness, which resulted in significant decrease of hardness removal. The study correlates with the results obtained by [27], wherein they had a maximum hardness removal of 84.3% by chitosan in low turbid water with initial hardness of about 204 mg/l as CaCO3.

Several experiments were carried out to determine the comparative performance of chitosan on E. coli in different turbidities. E. coli negative is present in the chitin-treated waters in all of the turbidities. The conclusive evidence was found for the negative influence of chitosan on E. coli. The regrowth of E. coli was not observed in the experiments after 24 h, which was similar to the observations by [27].

As far as sago is considered, the starch was effective both individually and as blended coagulant. Unlike polyaluminium chloride, the efficiency of the natural coagulants is not affected by pH. The pH increased their efficiency, which is one of the advantages of natural coagulants. The principle behind the efficiency of the sago from the literature can be stated as follows: Sago starch is a natural polymer that is categorized as polyelectrolyte and can act as coagulant aid. Coagulant aid can be classified according to the ionization traits, which are the anions, cations, and amphoteric (with dual charges). Bratskaya et al. [30] mentioned that among the three groups, cation polymer is normally used to remove adsorbed negatively charged particles by attracting the adsorbed particles through electrostatic force. They discovered that anion polymer and those non-ionized cannot be used to coagulate negatively charged particles.

The chemical oxygen demand (COD) reduction is influenced by the concentration of sago used; the lower the concentration the better the removal of the COD. Using less than 1.50 g L-1, better COD reduction is observed. At this low concentration, settling time did not influence the COD reduction. Similarly, concentration of sago used at lower than 1.50 g L-1 reduced the turbidity in less than 15 min of settling time. Sago concentration higher than 1.50 g L-1 increased the turbidity; however, settling time has an influence on the turbidity reduction at higher sago concentrations. This pattern is congruent with the COD removal [31].

The sago starch-graft-polyacrylamide (SS-g-PAm) coagulants were found to achieve water turbidity removal up to 96.6%. The results of this study suggest that SS-g-PAm copolymer is a potential coagulant for reducing turbidity during water treatment [32].

At its optimum concentration, D. lablab seed powder does not affect the pH of the water. Total and calcium hardness remained almost constant and were within acceptable levels according to World Health Organization standards for drinking water. Moreover, coagulation of medium to high turbidity water with D. lablab seed powder with the finest grain size reduced turbidity further. The best performance of the finest seed powder could be due to its large total surface area, whereby most of the water-soluble proteins are at the solid–liquid interface during the extraction process as stated by Gassenschmidtet al. [33]. This might have increased the concentration of active coagulation polymer in the extract, which improved the coagulation process. The coagulant extract from seeds has shown antimicrobial activity in the comparative culture test, which was also observed in the study of Tandonet al. [34].

D. lablab demonstrated the best performance with turbid water, in which a turbidity removal efficiency of 87% was observed. The restabilization of destabilized colloidal particles, which was associated with higher residual turbidities, occurred at dosages above the optimum. It is commonly observed that particles are destabilized by small amounts of hydrolyzing metal salts and that optimum destabilization corresponds with neutralization of the particles’ charge. Larger amounts of coagulants cause charge reversal so that the particles become positively charged and, thus, restabilization occurs, which results in elevated turbidity levels [35]. It has also been observed that the reduction in turbidity is associated with significant improvements in bacteriological quality. The effect of natural coagulants on turbidity removal and the antimicrobial properties against microorganisms may render them applicable for simultaneous coagulation and disinfection of water for rural and peri-urban people in developing countries [36].

It is observed that blended coagulants gave utmost efficiency as compared to the traditional alum coagulants. Here in this blending process, we reduce the alum dose up to 80%; thus, we reduce the drawbacks of the alum. Also, we can reduce the cost of the treatment using the natural coagulants instead of the traditional coagulant.

E. coli is the best coliform indicator of fecal contamination from human and animal wastes. E. colipresence is more representative of fecal pollution because it is present in higher numbers in fecal material and generally not elsewhere in the environment [37]. Results showed the absence of E. coli increases with increasing time. A greater percentage of E. coli was eliminated in higher turbidities. The aggregation and, thus, removal of E. coli was directly proportional to the concentration of particles in the suspension. Chitosan and other natural coagulants showed antibacterial effects of 2 to 4 log reductions.

Antimicrobial effects of water-insoluble chitin and coagulants were attributed to both its flocculation and bactericidal activities. A bridging mechanism has been reported for bacterial coagulation by chitosan [38]. Especially with reference to chitosan, molecules can stack on the microbial cell surface, thereby forming an impervious layer around the cell that blocks the channels, which are crucial for living cells [39]. On the other hand, cell reduction in microorganisms, such as E. coli, occurred without noticeable cell aggregation by chitosan.

This indicates that flocculation was not the only mechanism by which microbial reduction occurred. It was found that when samples were stored during 24 h, regrowth of E. coli was not observed for all turbidities. It should be noted that the test water contained no nutrient to support regrowth of E. coli, and chitosan is not a nutrient source for it. Another experiment was designed to check the effect of alum alone. Regrowth of E. coli was not observed for unaided alum after 24 h. The number of E. coli after resuspension of sediment reached to the initial numbers after 24 h and showed that it cannot be inactivated by alum. Such findings have been previously reported by Bina[40].


Access to clean and safe drinking water is difficult in rural areas of India. Water is generally available during the rainy season, but it is muddy and full of sediments. Because of a lack of purifying agents, communities drink water that is no doubt contaminated by sediment and human feces. Thus, the use of natural coagulants that are locally available in combination with solar radiation, which is abundant and inexhaustible, provides a solution to the need for clean and safe drinking water in the rural communities of India. Use of this technology can reduce poverty, decrease excess morbidity and mortality from waterborne diseases, and improve overall quality of life in rural areas.

The application of coagulation treatment using natural coagulants on surface water was examined in this study. The surface water was characterized by a high concentration of suspended particles with a high turbidity. At a varied range of pH, the suspended particles easily dissolved and settled along with the coagulants added. Research has been undertaken to evaluate the performance of natural starches of sago flour, bean powder, and chitin to act as coagulants individually and in blended form. In all three cases, the main variable was the dosage of the coagulant. The study shows that natural characteristics of starch and other coagulants can be an efficient coagulant for surface water but would need further study in modifying it to be efficient to the maximum. Thus, it can be concluded that the blended coagulants are the best which give maximum removal efficiency in minimum time.

It is chitin and chitosan which can readily be derivatized by utilizing the reactivity of the primary amino group and the primary and secondary hydroxyl groups to find applications in diversified areas. In this work, an attempt has been made to increase the understanding of the importance and effects of chitin at various doses and pH conditions, upon the chemical and biological properties of water. In view of this, this study will attract the attention of academicians and environmentalists.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Saritha Vara

Author Affiliations

Department of Environmental Studies, GITAM Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh 530045, India

International Journal of Energy and Environmental Engineering 2012, 3:29 doi:10.1186/2251-6832-3-29
The electronic version of this article is the complete one and can be found online at:

Received: 24 May 2012
Accepted: 30 July 2012
Published: 5 October 2012

© 2012 Vara; licensee BioMed Central Ltd.


Categories : Science and Industry Updates

Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania –

Posted by 11 Feb, 2013

TweetStudy of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania Abstract This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds […]

Study of Physico-Chemical Characteristics of Wastewater in an Urban Agglomeration in Romania


This study investigates the level of wastewater pollution by analyzing its chemical characteristics at five wastewater collectors. Samples are collected before they discharge into the Danube during a monitoring campaign of two weeks. Organic and inorganic compounds, heavy metals, and biogenic compounds have been analyzed using potentiometric and spectrophotometric methods. Experimental results show that the quality of wastewater varies from site to site and it greatly depends on the origin of the wastewater. Correlation analysis was used in order to identify possible relationships between concentrations of various analyzed parameters, which could be used in selecting the appropriate method for wastewater treatment to be implemented at wastewater plants.

1. Introduction

Sources of wastewater in the selected area are microindustries (like laundries, hotels, hospitals, etc.), macroindustries (industrial wastewater) and household activities (domestic wastewater). Wastewater is collected through sewage systems (underground sewage pipes) to one or more centralized Sewage Treatment Plants (STPs), where, ideally, the sewage water is treated. However, in cities and towns with old sewage systems treatment stations sometimes simply do not exist or, if they exist, they might not be properly equipped for an efficient treatment. Even when all establishments are connected to the sewage system, the designed capacities are often exceeded, resulting in a less efficient sewage system and occasional leaks.

Studies of water quality in various effluents revealed that anthropogenic activities have an important negative impact on water quality in the downstream sections of the major rivers. This is a result of cumulative effects from upstream development but also from inadequate wastewater treatment facilities. Water quality decay, characterized by important modifications of chemical oxygen demand (COD), total suspended solids (TSSs), total nitrogen (TN), total phosphorous (TP), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), and so forth [11] are the result of wastewater discharge in rivers. Water-related environmental quality has been shown to be far from adequate due to unknown characteristics of wastewater . Thus an important element in preventing and controlling river pollution by an effective management of STP is the existence of reliable and accurate information about the concentrations of pollutants in wastewater. Studies of wastewater in Danube basins can be found, for instance, in central and eastern European countries, but we are not aware of extensive studies of wastewater quality at regional/national level in Romania.

This paper analyses the chemical composition of wastewater at several collectors/stations in an important Romanian city, Galati, before being discharged into natural receptors, which in this case are the Danube and Siret Rivers. No sewage treatment existed when the monitoring campaign took place, except the mechanical separation. The study presented here is part of a larger project aiming at establishing the best treatment technology of wastewater at each station. Presently this project is in the implementation stage at all stations. Possible relationships between concentrations of various chemical residues in wastewater and with pollution sources are also investigated. The study is based on daily measurements of chemical parameters at five city collectors in Galati, Romania, during a two-week campaign in February 2010.

2. Experimental Analysis

2.1. Location of Sampling Sites

Galati-Braila area is the second urban agglomeration in Romania after Bucharest, which is located in Romania at the confluence of three major rivers: Danube, Siret, and Prut. The wastewater average flow is about 100000 m3/day . The drainage system covers an area of 2300 ha, serving approximately 99% of the population (approximately 300000 habitants). The basic drainage system is very old, dating back to the end of the 19th century, and was extended along with the expansion of the city due to demographic and industrial evolution. There are several collectors that collect wastewater and rainwater from various areas with very different characteristics, according to the existing water-pipe drainage system. There is no treatment at any station, except for simple mechanical separation. However, industrial wastewater is pretreated before being discharged in the city system. The five wastewater collectors are denoted in the following as S 1 , S 2 , … , S 5. Four of them discharge in the Danube River and the fifth discharges in the Siret River (which is an affluent of Danube River). Figure 1 shows the distribution of the monitoring sites and highlights the type of collecting area (domestic, industrial, or mixed). For the sake of brevity, these stations will be named in the present paper as “domestic,” “mixed,” and “industrial” stations, according to the type of collected wastewater. The mixture between domestic and industrial water at the two mixed collectors is the result of changes in city planning and various transformations of small/medium enterprises.

Figure 1


















Figure 1: Monitoring sampling sites of wastewater from Galati city.

Technical details about each collector/station can be found in Table 1. The first station, S1, collects 10% of the total quantity of wastewater. A high percentage of the water collected at this station comes from domestic sources from the south part of the city (more than 96%). Station S2 collects 64% of the total daily flow of wastewater, out of which 30% comes from domestic sources and the rest (70%) is industrial. Most of the industrial sources in this area are food-production units (milk, braid, wine) while the domestic sources include 20 schools, 4 hospitals, and important social objectives. Station S3 is located in the old part of the city and collects 5% of the total wastewater and has domestic sources. At the fourth station, S4, 11% of the quantity of wastewater is collected from domestic (70%) and industrial (30%) sources. The last collector, S5, collects wastewater from the industrial area of the city, where the most important objectives are a shipyard, metallurgical, and mechanical plants and transport stations.

Table 1

Table 1: Characteristics of collectors S 1 , … , S 5.

2.2. Physico-Chemical Parameters and Methods of Analysis

The physico-chemical parameters which were measured are the following:(i)pH;(ii)chemical oxygen demand (COD) and dissolved oxygen (DO);(iii)nutrients such as nitrate (N-NO3) and phosphate (P-PO4) (these were included due to their impact on the eutrophication phenomenon);(iv)metals such as aluminum (Al+3), soluble iron (Fe+2), and cadmium (Cd+2).

The pH and DO were determined in situ using a portable multiparameter analyzer. Other chemical parameters such as COD, metals and nutrients were determined according to the standard analytical methods for the examination of water and wastewater .

The COD values reflect the organic and inorganic compounds oxidized by dichromate with the following exceptions: some heterocyclic compounds (e.g., pyridine), quaternary nitrogen compounds, and readily volatile hydrocarbons. The concentration of metals (Al+3, Cd+2, Fe+2) was determined as a result of their toxicity.

The value of pH was analyzed according to the Romanian Standard using a portable multiparameter analyzer, Consort C932.

COD parameter was measured using COD Vials (COD 25–1500 mg/L, Merck, Germany). The digestion process of 3 mL aliquots was carried out in the COD Vials for 2 h at 148°C. The absorbance level of the digested samples was then measured with a spectrophotometer at λ = 605 nm (Spectroquant NOVA 60, Merck, Germany), the method being analogous to EPA methods [20], US Standard Methods, and Romanian Standard Methods.

The DO parameter was analyzed according to Romanian Standard using a portable multiparameter analyzer, Consort C932.

Aluminum ions (Al+3) were determined using Al Vials (Aluminum Test 0.020–1.20 mg/L, Merck, Germany) in a way analogous to US Standard Methods. The absorbance levels of the samples were then measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 550 nm. The method was based on reaction between aluminum ions and Chromazurol S, in weakly acidic-acetate buffered solution, to form a blue-violet compound that is determined spectrophotometrically. The pH of the sample must be within range 3–10. Where necessary, the pH will be adjusted with sodium hydroxide solution or sulphuric acid.

Iron concentration (Fe+2) was determined using Iron Vials (Iron Test 0.005–5.00 mg/L, Merck, Germany) and their absorbance levels were then measured using a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 565 nm. The method was based on reducing all iron ions (Fe+3) to iron ions (Fe+2). In a thioglycolate-buffered medium, these react with a triazine derivative to form a red-violet complex which is spectrophotometrically determined. The pH must be within range 3–11. Where necessary the pH was adjusted with sodium hydroxide solution or sulphuric acid.

Cadmium ions (Cd+2) were determined using Cadmium Vials (Cadmium Test 0.005–5.00 mg/L, Merck, Germany), their absorbance levels being measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 525 nm. The method was based on the reaction of cadmium ions with a cadion derivative (cadion-trivial name for 1-(4-nitrophenyl)-3-(4-phenylazophenyl)triazene), in alkaline solution, to form a red complex that is determined spectrophotometrically. The pH must be within the range 3–11, and, if not, the pH will be adjusted with sodium hydroxide solution or sulphuric acid.

Nitrogen content was determined using Nitrate Vials (Nitrate Cell test in seawater 0.10–3.00 mg/L NO3-N or 0.4–13.3 mg/L N O3 −, Merck, Germany). The method being based on the reaction of nitrate ions with resorcinol, in the presence of chloride, in a strongly sulphuric acid solution, to form a red-violet indophenols dye that is determined spectrophotometrically. The absorbance levels of the samples were then measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 500 nm.

Phosphorous content was determined using Phosphate Vials (Phosphate Cell Test 0.5–25.0 mg/L PO4-P or 1.5–76.7 mg/L P O4 − 3, Merck, Germany) with a method that was analogous to the US Standard Methods [17]. The method was based on the reaction of orthophosphate anions, in a sulphuric solution, with ammonium vanadate and ammonium heptamolybdate to form orange-yellow molybdo-vanado-phosphoric acid that is determined spectrophotometrically (“VM” method). The absorbance levels of the samples were then measured with a spectrophotometer (Spectroquant NOVA 60; Merck, Germany) at λ = 410 nm.

All results were compared with standardized levels for wastewater quality found in accordance with European Commission Directive [23] and Romanian law [24].

3. Results and Discussion

3.1. The Acidity (pH)

The results for pH for all the investigated five collectors are shown in Figure 2.

Figure 2




















Figure 2: Daily variation of pH at all sites.

Generally, the wastewater collected at the monitored sites is slightly alkaline. The pH varies between 6.8 and 8.3—average value 7.82—thus the pH values are within the accepted range for Danube River according to the Romanian law, which is between 6.5 and 9.0. The pH variation is relatively similar at collectors S1–S4 (domestic and/or mixed domestic-industrial contribution). Lower pH values are observed at S5, which is dominated by industrial wastewater, originating from major enterprises and heavy industry. However, these values are not too low, since usually pH values for industrial wastewater are smaller than 6.5.

A significant decrease in the pH value was observed during the 8th day of the analyzed period at each station. Interestingly, a heavy snowfall took place at that particular time, thus the decrease could be attributed to the mixing between wastewater and a high quantity of low pH water, resulted from the melting of snow . One could speculate that the snowfall, which has an acidic character, might have affected the pH of the wastewater through “run off” phenomena.

No other snowfall took place during the monitoring campaign, thus no definite conclusion can be drawn for a possible relationship between pH and snowfalls.

3.2. Results for Chemical Oxygen Demand (COD)

Detection of COD values in each sampling site of wastewater is presented in Figure 3.

Figure 3




















Figure 3: Daily variation of COD at all sites.

All COD values are higher than the maximum accepted values (125 mg O2/L) of the Romanian Law . Both organic and inorganic compounds have an effect on urban wastewater’s oxidability since COD represents not only oxidation of organic compounds, but also the oxidation of reductive inorganic compounds. That means some inorganic compounds interfere with COD determination through the consumption of C r2O7 − 2. Two different behaviors can be observed, which are associated with the type of the collected wastewater as follows.(i)The first group consists of stations S2, S4 and S5 where the wastewater has an important industrial component. At these stations, COD values are approximately between 150 and 300 mg O2/L, smaller, for instance, than COD values found by in the raw wastewater produced by an industrial coffee plant where COD values were between 4000 and 4600 mg O2/L. Also, the temporal variation of COD values at all three stations is similar with no significant deviations from the average value, which is about 250 mg O2/L. Interestingly, the lowest COD level can be seen, on the average, at S5, which has the highest percentage of industrial wastewater. The second group comprises the “domestic” stations S1 and S3. The COD levels are higher, with values of 500 mg O2/L or more. Also, the variability is clearly higher than at the industrial-type stations. No clear association between the variations at the two sites can be seen. A peak in COD was measured in the 14th day of the study at site S1 (1160 mg O2/L). Since S1 is a domestic type station, it is unlikely that some major discharge led to such a high variation of COD. Unfortunately, no other information exists that might indicate a possible cause for this increase.

3.3. Results for Dissolved Oxygen (DO)

The amount of DO, which represents the concentration of chemical or biological compounds that can be oxidized and that might have pollution potential, can affect a sum of processes that include re-aeration, transport, photosynthesis, respiration, nitrification, and decay of organic matter. Low DO concentrations can lead to impaired fish development and maturation, increased fish mortality, and underwater habitat degradation . No standards are given by Romanian or European Law for DO in wastewater. The DO values for the analyzed wastewater at all five sites are shown in Figure 4.

Figure 4




















Figure 4: Daily variation of DO at all sites.

Concentration of DO varies at all sampling sites and has values between 0.96 (at S2) and 11.33 (at S4) mg O2/L with a mean value of 6.39 mg O2/L. These are clearly higher than DO values measured, for instance, in surface natural waters in China, where the Taihu watershed had the lowest DO level (2.70 mg/L), while in other rivers DO varied from 3.14 to 3.36 mg O2/L [34]. On the other hand, such high values of DO (9.0 mg O2/L) could be found, for instance, in the Santa Cruz River , who argued that discharging industry and domestic wastewater induced serious organic pollution in rivers, since the decrease of DO was mainly caused by the decomposition of organic compounds. Extremely low DO content (DO < 2 mg O2/L) usually indicates the degradation of an aquatic system .

The DO levels vary similarly for all selected sampling sites. The DO levels cover a wide range, with a minimum value of 1.0 mg O2/L at S1 and S3 and a maximum value of 11.33 mg O2/L at S4. There is a drop in DO at all stations, observed is in the 8th day of the monitoring interval, which coincides with the day when a similar decrease in pH took place. The lowest values of DO are observed for S1, one of the two “domestic” stations. It is interesting to note that DO at S5 is low although the wastewater here comes only from industry sources.

3.4. Metals

The variation of Al+3, Fe+2, and Cd+2 concentrations in wastewater are shown in Figures 5, 6, and 7. Al+3 concentrations (Figure 5) were mostly within the 0.05–0.20 mg/L range at all the sampling sites. However, during the beginning and the end of the monitoring campaign, Al+3 concentration at station S2 is high (reaching even 0.65 mg/L), nonetheless below the limit imposed by the Romanian law, which is 5 mg/L . The fact that in the beginning of the time interval, the concentration of Al+3 is high at two neighboring stations (S1 and S2) suggests that some localized discharge affecting both runaway and waste water, might have happened in the southern part of the city, which led to the increase of Al+3concentration in the collected wastewater. This is supported by the fact that the concentration gradually decreases at S2.


Figure 5: Daily variation of Al at all sites.

Figure 5




















Figure 6: Daily variation of Fe at all sites.

Figure 6




















Figure 7: Daily variation of Cd at all sites.

Figure 7




















The variation of Fe+2 concentrations is shown in Figure 6. Fe+2 concentration is within the 0.07–0.4 mg/L interval, below 5.0 mg/L, which is the maximum accepted value of the Romanian law . Two higher values were observed at S2 and S4 (both with industrial component) during the third and fourth days of the monitoring campaign.

Besides Al+3 and Fe+2, concentrations of Cd+2 were determined and the variations at the five stations are shown in Figure 7. Cd+2 is a rare pollutant, originating from heavy industry. Leakages in the sewage systems can also lead to Cd+2. Except for two days, Cd+2 varies between 0.005 and 0.04 mg/L. The two high values of 0.11 mg/L were observed in the first and fourth days at S5, which collects industrial wastewater. However, Cd+2 concentrations do not exceed the maximum accepted values of the Romanian law [24] for the monitoring interval which is 0.2 mg/L.

3.5. Nutrients

Water systems are very vulnerable to nitrate pollution sources like septic systems, animal waste, commercial fertilizers, and decaying organic matter [37]. Important quantities of nutrients, which are impossible to be removed naturally, can be found in rivers and this leads to the eutrophication of natural water (like Danube River). As a result, an increase in the lifetime of pathogenic microorganisms is expected. Measurement of nutrient (different forms of nitrogen (N) or phosphorous (P)) variations in domestic wastewater is strongly needed in order to maintain the water quality of receptors [36]. Nitrogen by nitrate (Figure 8) and phosphorous by phosphate (Figure 9) are considered as representative for nutrients.

Figure 8: Daily variation of N-NO3 at all sites.

Figure 8



















Figure 9: Daily variation of P-PO4 at all sites.

Figure 9




















Figure 8 shows that N-NO3 concentrations vary, on the average, between 0 and 5.0 mg/L.

At all four stations with a domestic component, S1, S2, S3 and S4, the concentration of N-NO3 is low (between 0 and 1.5 mg/L) and the daily variation is relatively similar at all sites. Noticeable drops of the N-NO3 concentration are observed at all stations in the 8th day of the monitoring interval, coinciding with pH (Figure 2) and DO strong variations (Figure 4). This supports the conclusion that the heavy snowfall recorded at that period had an important impact on wastewater quality most likely due to the runoff joining the sewage system.

The behavior of N-NO3 clearly differs at station S5, which collects only industrial wastewater. Significantly higher values of N-NO3, ranging from 2.0 to 5.0 mg/L, were detected. However, the mean concentration of N-NO3 remained below the maximum concentration given by the Romanian law [24]. Obviously, if treatment stations have to be set up, the priority for this particular nutrient component should concentrate on stations where industrial wastewater is collected.

Another nutrient that was analyzed for our study was orthophosphate expressed by phosphorous. The P-PO4 concentration varies, on the average, between 1.0 and 6.0 mg/L (Figure 9). For this component, concentrations are higher at domestic stations, S1 and S3, than at the other three stations. P-PO4 is expected to increase in domestic wastewater because of food, more precisely meat, processing, washing, and so forth. The lowest values were observed at S5, which has a negligible domestic component. Peaks in the P-PO4 concentration are observed at S1. Interestingly enough, P-PO4 temporal variations correlated pretty well at stations S2, S4, and S5 (which collect industrial wastewater). Unlike most of the other analyzed compounds, for which the concentrations were within the accepted ranges, the maximum level of P-PO4 is exceeded at all five collectors. Both Romanian law  and the European law  stipulate 2.0 mg/L total phosphorous for 10000–100000 habitants, and for more than 100000 habitants (as in Galati City’s case) 1.0 mg/L total phosphorus. Interestingly, domestic stations seem to require more attention with respect to the quality of water then industrial stations.

Our results regarding the variation and levels of the analyzed parameters are grouped below as the following.(1)The values of pH are within the accepted range for Danube, and their daily variations are relatively similar for both domestic and mixed wastewater. Significantly smaller pH values were measured in the wastewater with a high industrial load. A clear minimum was observed at all sites in the 8th day of the monitoring period, when a heavy snowfall took place. One could speculate that the snowfall, which has an acidic character, might have affected the pH of the wastewater through “run off” phenomena. However, a clear connection cannot be established relying on one event only.(2)The COD level clearly depends on the type of wastewater. Higher values were observed for domestic wastewater, while “pure” industrial wastewater has the lowest COD. This might be explained by the fact that industrial wastewater benefits from some treatment before being discharged into the city sewage system. However, COD does exceed the maximum accepted values according to the Romanian law [24] at all sites thus additional treatment is required at all stations.(3)Concentrations of all analysed metals, Al+3, Cd+2 and Fe+2, are within the limit of the Romanian law. No association with the type of wastewater could be inferred. Isolated peaks could not be linked with any specific polluting factors, except for Cd+2, for which accidental concentration increases are observed for pure industrial wastewater.(4)The level of P-PO4, one of the two nutrients that were analyzed, was high at all stations; however, the highest concentrations are associated with domestic loads.(5)Opposingly, the N-NO3 level is the highest, by far, in wastewater with a high industrial contribution.

3.6. Possible Relationships between Various Parameters

The experimental results have shown that some parameters might be related and that their behavior greatly depends on the type of collected wastewater. Differences between the behavior of physico-chemical parameters at the domestic sites (S1 and S3), on one hand, and at the other sites, on the other, was observed. Pearson correlation coefficients have been calculated between all parameters at all the selected five sites and corresponding significances. Although most of correlations were not significant, some interesting connections between various parameters at sites with similar characteristics were revealed. Table 2 shows correlation coefficients between various parameters for all five stations. Significant correlations at different types of stations are denoted as follows: italicized fonts for domestic stations, boldface italicized fonts for the industrial station and boldface fonts for mixed stations.

Table 2





























Table 2: Correlation coefficients calculated for station S1 to S5. Significant correlations at each type of stations are identified as follows: boldface italicized fonts for industrial station (S5), italicized fonts for domestic stations (S1 and S3) and boldface fonts for mixed stations (S2 and S4).

An important relationship seems to exist between pH and N-NO3 at all stations except for the industrial wastewater collecting site, S5 (i.e., at all stations collecting wastewater resulting from domestic activities). Similarly, pH correlates well with DO at all stations except the industrial one.

COD correlates with two metals, Cd+2 and soluble Fe+2, which is expected [30], but only at S1 and S3, where the daily variations of the concentration for these two metals (Cd+2 and soluble Fe+2) were similar.

No conclusion can be drawn for the industrial wastewater collector that was analyzed, where both positive and negative correlations were observed. The lack of correlation between the two metals and COD at the industrial wastewater collectors suggests that other processes, that alter the chemical equilibrium between the two chemical compounds, must be taken into account. For example some metals are complexed by organic compounds that are present in the water and the pH values can influence these phenomena.

DO correlates with pH and N-NO3 at all four sampling stations with domestic component (S1–S4) but the relationship vanish at S5 (industrial). There is also a negative correlation between DO and Fe+2 and Cd+2 only for domestic wastewater, which is expected because of the natural oxidation of metals. The correlation vanishes at the other three stations which collect wastewater from industrial areas.

Heavy metals, Fe+2 and Cd+2 correlate only at domestic stations and no relationships can be defined to link the concentration of Al+3 with other components.

The P-PO4 variation is linked to the variation of soluble Fe+2 at the two stations that collect domestic wastewater. Interestingly, these two elements exist together in reductive domestic systems because these are dominated by proteins, lipids, degradation products. This relationship disappears at the other stations, where the industrial load is significant. The other metals, Al+3, seems to be linked with P-PO4at stations S5 and S2, which collect wastewater with the highest industrial load. No link is observed for the rest of stations and for Cd+2 which can be explained by a higher probability of iron (II) orthophosphate to form in wastewater compared to Al+3 or Cd+2 orthophosphates.

Positive correlations can also be seen between P-PO4 and COD for all sampling sites except S1, where the relationship is still positive but less significant. The other nutrient, N-NO3, is anticorrelated with COD but only at S3 and is well correlated with pH and DO at all four stations with domestic component. The only exception is station S5, which collects mostly industrial wastewater.

Concluding, positive correlations were observed between the following parameters.(1)pH and N-NO3 everywhere except “purely” industrial water.(2)COD and soluble Fe+2 at domestic stations.(3)DO and pH, on the one hand, and DO and N-NO3 at domestic stations.(4)P-PO4 and soluble Fe+2 at domestic stations.(5)P-PO4 and COD everywhere, which, taking into account the high level of P-PO4 at domestic stations, might suggest that one important contributor to water quality degradation are household discharges.(6)Al+3 and P-PO4.

4. Conclusions

In the present paper we have analyzed the daily variation of several physico-chemical parameters of the wastewater (pH, COD, DO, Al+3, Fe+2, Cd+2, N-NO3, and P-PO4) at five collectors that have been characterized as domestic, industrial and mixed, according to the type of collecting area. Different results have been obtained for domestic and industrial wastewater. Most of the chemical parameters are within accepted ranges. Nevertheless, their values as well as their behavior depend significantly on the type of collected wastewater.

The overall conclusion is that wastewater with a high domestic load has the highest negative impact on water quality in a river. On the other hand, industrial wastewater brings an important nutrient load, with potentially negative effect on the basins where it is discharged. Our results suggested that meteorological factors (snow) might modify some characteristics of wastewater, but a clear connection cannot be established relying on one event only.

Significantly smaller pH values were measured in the wastewater with a high industrial load. The COD level clearly depends on the type of wastewater. Higher values were observed for wastewater with domestic sources, while “pure” industrial wastewater has the lowest COD. This might be explained by the fact that industrial wastewater benefits from some treatment before being discharged into the city sewage system. COD does exceed the maximum accepted values according to the Romanian law at all sites thus additional treatment is required at all stations. Accidental increases of Cd+2 concentrations are observed for pure industrial wastewater. The highest concentrations of P-PO4 are associated with domestic loads. Opposing, the N-NO3 level is clearly the highest in wastewater with a high industrial contribution.

Correlation analysis has been used in order to identify possible relationships between various parameters for wastewater of similar origin.

Positive correlations between various physico-chemical parameters exist for the domestic wastewater (DO, pH and N-NO3, on the one hand, and P-PO4, COD and soluble Fe+2, on the other hand). Except for two cases, these relationships break when the industrial load is high. Some of the existing correlations are expected as discussed above, thus any removal treatment should be differentiated according to the type of collector, before discharging it into the natural receptors in order to be costly efficient. Correlations between DO and COD and nutrient load suggest that the most important threat for natural basins in the studied area, are domestic sources for the wastewater.

The different percentages of industrial and domestic collected wastewater vary at each station, which has a clear impact on concentrations of the selected chemical components. Our results show that domestic wastewater has a higher negative impact on water quality than wastewater with a high industrial load, which, surprisingly, seems to be cleaner. This might be related to the fact that most industries are forced, by law, to apply a pretreatment before discharging wastewater into the city sewage system. Industrial wastewater affects the nutrient content of natural water basins. Although the time period was relatively short, our study identified specific requirements of chemical treatment at each station. An efficient treatment plan should take into account the type of wastewater to be processed at each station. Results presented here are linked with another research topic assessing the level of water quality in the lower basin of the Danube before and after implementing the complete biochemical treatment plants.


The work of Catalin Trif was supported by Project SOP HRD-EFICIENT 61445/2009.

Copyright © 2012 Paula Popa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited – original found here:



Categories : Case Studies & Application Stories, Science and Industry Updates

Ultraviolet Water Purification –

Posted by 30 Jan, 2013

Tweet A low pressure mercury vapor discharge tube floods the inside of a biosafety cabinet with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces. Ultraviolet germicidal irradiation (UVGI) is a disinfection method that uses ultraviolet (UV) light at sufficiently short wavelength to kill microorganisms. It is used in a variety […]

A low pressure mercury vapor discharge tube floods the inside of a biosafety cabinet with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces.

A low pressure mercury vapor discharge tube floods the inside of a biosafety cabinet with shortwave UV light when not in use, sterilizing microbiological contaminants from irradiated surfaces.

Ultraviolet germicidal irradiation (UVGI) is a disinfection method that uses ultraviolet (UV) light at sufficiently short wavelength to kill microorganisms. It is used in a variety of applications, such as food, air and water purification. UVGI uses short-wavelength ultraviolet radiation that is harmful to microorganisms. It is effective in destroying the nucleic acids in these organisms so that their DNA is disrupted by the UV radiation, leaving them unable to perform vital cellular functions.

The wavelength of UV that causes this effect is rare on Earth as the atmosphere blocks it. Using a UVGI device in certain environments like circulating air or water systems creates a deadly effect on micro-organisms such as pathogens, viruses and molds that are in these environments. Coupled with a filtration system, UVGI can remove harmful microorganisms from these environments.

The application of UVGI to disinfection has been an accepted practice since the mid-20th century. It has been used primarily in medical sanitation and sterile work facilities. Increasingly it was employed to sterilize drinking and wastewater, as the holding facilities were enclosed and could be circulated to ensure a higher exposure to the UV. In recent years UVGI has found renewed application in air sanitizing.

UV has been a known mutagen at the cellular level for more than one-hundred years. The 1903 Nobel Prize for Medicine was awarded to Niels Finsen for his use of UV against lupus vulgaris, tuberculosis of the skin.

Using ultraviolet (UV) light for drinking water disinfection dates back to 1916 in the U.S. Over the years, UV costs have declined as researchers develop and use new UV methods to disinfect water and wastewater. Currently, several states have developed regulations that allow systems to disinfect their drinking water supplies with UV light.


Ultraviolet light is electromagnetic radiation with wavelengths shorter than visible light. UV can be separated into various ranges, with short range UV (UVC) considered “germicidal UV.” At certain wavelengths UV is mutagenic to bacteria, viruses and other microorganisms. At a wavelength of 2,537 Angstroms (254 nm) UV will break the molecular bonds within micro-organismal DNA, producing thymine dimers in their DNA thereby destroying them, rendering them harmless or prohibiting growth and reproduction. It is a process similar to the UV effect of longer wavelengths (UVB) on humans, such as sunburn or sun glare. Microorganisms have less protection from UV and cannot survive prolonged exposure to it.

A UVGI system is designed to expose environments such as water tanks, sealed rooms and forced air systems to germicidal UV. Exposure comes from germicidal lamps that emit germicidal UV electromagnetic radiation at the correct wavelength, thus irradiating the environment. The forced flow of air or water through this environment ensures the exposure.


The effectiveness of germicidal UV in such an environment depends on a number of factors: the length of time a micro-organism is exposed to UV, power fluctuations of the UV source that impact the EM wavelength, the presence of particles that can protect the micro-organisms from UV, and a micro-organism’s ability to withstand UV during its exposure.

In many systems redundancy in exposing micro-organisms to UV is achieved by circulating the air or water repeatedly. This ensures multiple passes so that the UV is effective against the highest number of micro-organisms and will irradiate resistant micro-organisms more than once to break them down.

The effectiveness of this form of sterilization is also dependent on line-of-sight exposure of the micro-organisms to the UV light. Environments where design creates obstacles that block the UV light are not as effective. In such an environment the effectiveness is then reliant on the placement of the UVGI system so that line-of-sight is optimum for sterilization.

Sterilization is often misquoted as being achievable. While it is theoretically possible in a controlled environment, it is very difficult to prove and the term ‘disinfection’ is used by companies offering this service as to avoid legal reprimand. Specialist companies will often advertise a certain log reduction i.e. 99.9999% effective, instead of sterilization. This takes into consideration a phenomenon known as light and dark repair (photoreactivation and excision (BER) respectively) in which the DNA in the bacterium will fix itself after being damaged by UV light.

A separate problem that will affect UVGI is dust or other film coating the bulb, which can lower UV output. Therefore bulbs require annual replacement and scheduled cleaning to ensure effectiveness. The lifetime of germicidal UV bulbs varies depending on design. Also the material that the bulb is made of can absorb some of the germicidal rays.

Lamp cooling under airflow can also lower UV output, thus care should be taken to shield lamps from direct airflow via parabolic reflector. Or add additional lamps to compensate for the cooling effect.
Increases in effectiveness and UV intensity can be achieved by using reflection. Aluminium has the highest reflectivity rate versus other metals and is recommended when using UV.

Inactivation of microorganisms

The degree of inactivation by ultraviolet radiation is directly related to the UV dose applied to the water. The dosage, a product of UV light intensity and exposure time, is usually measured in microjoules per square centimeter, or alternatively as microwatt seconds per square centimeter (µW·s/cm2). Dosages for a 90% kill of most bacteria and virus range from 2,000 to 8,000 µW·s/cm2. Dosage for larger parasites such as Cryptosporidium require a lower dose for inactivation. As a result, the US EPA has accepted UV disinfection as a method for drinking water plants to obtain Cryptosporidium, Giardia or virus inactivation credits. For example, for one-decimal-logarithm reduction of Cryptosporidium, a minimum dose of 2,500 µW·s/cm2 is required based on the US EPA UV Guidance Manual published in 2006.

Weaknesses and strengths


UV water treatment devices can be used for well water and surface water disinfection. UV treatment compares favorably with other water disinfection systems in terms of cost, labor and the need for technically trained personnel for operation: deep tube wells fitted with hand pumps, while perhaps the simplest to operate, require expensive drilling rigs, are immobile sources, and often produce hard water that is found distasteful. Chlorine disinfection treats larger organisms and offers residual disinfection, but these systems are expensive because they need a special operator training and a steady supply of a potentially hazardous material. Finally, boiling water over a biomass cook stove is the most reliable treatment method but it demands labor, and imposes a high economic cost. UV treatment is rapid and, in terms of primary energy use, approximately 20,000 times more efficient than boiling.


UV disinfection is most effective for treating a high clarity purified reverse osmosis distilled water. Suspended particles are a problem because microorganisms buried within particles are shielded from the UV light and pass through the unit unaffected. However, UV systems can be coupled with a pre-filter to remove those larger organisms that would otherwise pass through the UV system unaffected. The pre-filter also clarifies the water to improve light transmittance and therefore UV dose throughout the entire water column. Another key factor of UV water treatment is the flow rate: if the flow is too high, water will pass through without enough UV exposure. If the flow is too low, heat may build up and damage the UV lamp.


In UVGI systems the lamps are shielded or are in environments that limit exposure, such as a closed water tank or closed air circulation system, often with interlocks that automatically shut off the UV lamps if the system is opened for access by human beings.

In human beings, skin exposure to germicidal wavelengths of UV light can produce sunburn and skin cancer. Exposure of the eyes to this UV radiation can produce extremely painful inflammation of the cornea and temporary or permanent vision impairment, up to and including blindness in some cases. UV can damage the retina of the eye.

Another potential danger is the UV production of ozone. Ozone can be harmful to health. The United States Environmental Protection Agency designated 0.05 parts per million (ppm) of ozone to be a safe level. Lamps designed to release UVC and higher frequencies are doped so that any UV light below 254 nm will not be released, thus ozone is not produced. A full spectrum lamp will release all UV wavelengths and will produce ozone as well as UVC, UVB, and UVA. (The ozone is produced when UVC hits oxygen (O2) molecules, and so is only produced when oxygen is present.)

UV-C radiation is able to break down chemical bonds. This leads to rapid ageing of plastics (insulations, gasket) and other materials. Note that plastics sold to be “UV-resistant” are tested only for UV-B, as UV-C doesn’t normally reach the surface of the Earth. When UV is used near plastic, rubber, or insulations care should be taken to shield said components; metal tape or aluminum foil will suffice.

A disadvantage of the technique is that water treated by chlorination is resistant to reinfection, where UVGI water must be transported and delivered in such a way as to avoid contamination.


Air disinfection

UVGI can be used to disinfect air with prolonged exposure. Disinfection is a function of UV concentration and time, CT. For this reason, it is not as effective on moving air, when the lamp is perpendicular to the flow, as exposure times are dramatically reduced. Air purification UVGI systems can be freestanding units with shielded UV lamps that use a fan to force air past the UV light. Other systems are installed in forced air systems so that the circulation for the premises moves micro-organisms past the lamps. Key to this form of sterilization is placement of the UV lamps and a good filtration system to remove the dead micro-organisms.[8] For example, forced air systems by design impede line-of-sight, thus creating areas of the environment that will be shaded from the UV light. However, a UV lamp placed at the coils and drainpan of cooling system will keep micro-organisms from forming in these naturally damp places.

ASHRAE covers UVGI and its applications in IAQ and building maintenance in its 2008 Handbook, HVAC Systems and Equipment in Chapter 16 titled Ultraviolet Lamp Systems. ASHRAE’s 2011 Handbook, HVAC Applications, covers ULTRAVIOLET AIR AND SURFACE TREATMENT in Chapter 60.

Water sterilization

Ultraviolet disinfection of water consists of a purely physical, chemical-free process. UV-C radiation attacks the vital DNA of the bacteria directly. The bacteria lose their reproductive capability and are destroyed. Even parasites such as Cryptosporidia or Giardia, which are extremely resistant to chemical disinfectants, are efficiently reduced.[9] UV can also be used to remove chlorine and chloramine species from water ; this process is called photolysis, and requires a higher dose than normal disinfection. The sterilized microorganisms are not removed from the water. UV disinfection does not remove dissolved organics, inorganic compounds or particles in the water.[10] However, UV-oxidation processes can be used to simultaneously destroy trace chemical contaminants and provide high-level disinfection, such as the world’s largest indirect potable reuse plant in Orange County, California.[11] That title will soon be taken by New York which is set to open the Catskill-Delaware Water Ultraviolet Disinfection Facility, by the end of 2012. A total of 56 energy-efficient UV reactors will be installed to treat 2.2 billion US gallons (8,300,000 m3) a day to serve New York City.

UV disinfection leaves no taint, chemicals or residues in the treated water. Disinfection using UV light is quick and clean.

UV tube project

The UV Tube is a design concept for providing inexpensive water disinfection to people in poor countries. The concept is based the ability of ultraviolet light to kill infectious agents by disrupting their DNA. It was initially developed under an “open source” model at the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley. The form and composition of the UV Tube can vary depending on the resources available and the preferences of those building and using the device. However, certain geometric parameters must be maintained to ensure consistent performance. Several different versions of the UV Tube are currently being used in multiple locations in Mexico and Sri Lanka.


Germicidal lamp

Germicidal UV is delivered by a mercury-vapor lamp that emits UV at the germicidal wavelength. Mercury vapour emits at 254 nm. Many germicidal UV bulbs use special ballasts to regulate electrical current flow to the bulbs, similar to those needed for fluorescent lights. In some cases, UVGI electrodeless lamps can be energised with microwaves, giving very long stable life and other advantages[clarification needed]. This is known as ‘Microwave UV.’

Lamps are either amalgam or medium pressure lamps. Each type has specific strengths and weaknesses.
Low-pressure UV lamps
These offer high efficiencies (approx 35% UVC) but lower power, typically 1 W/cm power density (power per unit of arc length).

Amalgam UV lamps
A high-power version of low-pressure lamps. They operate at higher temperatures and have a lifetime of up to 16,000 hours. Their efficiency is slightly lower than that of traditional low-pressure lamps (approx 33% UVC output) and power density is approx 2–3 W/cm.

Medium-pressure UV
These lamps have a broad and pronounced peak-line spectrum and a high radiation output but lower UVC efficiency of 10% or less. Typical power density is 30 W/cm³ or greater.
Depending on the quartz glass used for the lamp body, low-pressure and amalgam UV lamps emit light at 254 nm and 185 nm (for oxidation). 185 nm light is used to generate ozone.

The UV units for water treatment consist of a specialized low pressure mercury vapor lamp that produces ultraviolet radiation at 254 nm, or medium pressure UV lamps that produce a polychromatic output from 200 nm to visible and infrared energy. The optimal wavelengths for disinfection are close to 260 nm. Medium pressure lamps are approximately 12% efficient, whilst amalgam low pressure lamps can be up to 40% efficient. The UV lamp never contacts the water, it is either housed in a quartz glass sleeve inside the water chamber or mounted external to the water which flows through the transparent UV tube. It is mounted so that water can pass through a flow chamber, and UV rays are admitted and absorbed into the stream.

Sizing of a UV system is affected by three variables: flow rate, lamp power and UV transmittance in the water. UV manufacturers typically developed sophisticated Computational Fluid Dynamics (CFD) models validated with bioassay testing. This typically involves testing the UV reactor’s disinfection performance with either MS2 or T1 bacteriophages at various flow rates, UV transmittance and power levels in order to develop a regression model for system sizing. For example, this is a requirement for all drinking water systems in the United States per the US EPA UV Guidance Manual.[6]:5-2

The flow profile is produced from the chamber geometry, flow rate and particular turbulence model selected. The radiation profile is developed from inputs such as water quality, lamp type (power, germicidal efficiency, spectral output, arc length) and the transmittance and dimension of the quartz sleeve. Proprietary CFD software simulates both the flow and radiation profiles. Once the 3-D model of the chamber is built, it’s populated with a grid or mesh that comprises thousands of small cubes.

Points of interest—such as at a bend, on the quartz sleeve surface, or around the wiper mechanism—use a higher resolution mesh, whilst other areas within the reactor use a coarse mesh. Once the mesh is produced, hundreds of thousands of virtual particles are “fired” through the chamber. Each particle has several variables of interest associated with it, and the particles are “harvested” after the reactor. Discrete phase modeling produces delivered dose, headless and other chamber specific parameters.

When the modeling phase is complete, selected systems are validated using a professional third party to provide oversight and to determine how closely the model is able to predict the reality of system performance. System validation uses non-pathogenic surrogates to determine the Reduction Equivalent Dose (RED) ability of the reactors. Most systems are validated to deliver 40 mJ/[cm.sup.2] within an envelope of flow and transmittance.
To validate effectiveness in drinking water systems, the methods described in the US EPA UV Guidance Manual is typically used by the U.S. Environmental Protection Agency, whilst Europe has adopted Germany’s DVGW 294 standard. For wastewater systems, the NWRI/AwwaRF Ultraviolet Disinfection Guidelines for Drinking Water and Water Reuse protocols are typically used, especially in wastewater reuse applications.[14]
UV systems destined for drinking water applications are validated using a third party test house to demonstrate system capability, and usually a non pathogenic surrogate such as MS 2 phage or Bacillus Subtilis is used to verify actual system performance. UV manufacturers have verified the performance of a number of reactors, in each case iteratively improving the predictive models.

Wastewater treatment

Ultraviolet in wastewater treatment is replacing chlorination due to the chemical’s toxic by-products. Individual wastestreams to be treated by UVGI must be tested to ensure that the method will be effective due to potential interferences such as suspended solids, dyes or other substances that may block or absorb the UV radiation.

“UV units to treat small batches (1 to several liters) or low flows (1 to several liters per minute) of water at the community level are estimated to have costs of 0.02 US$ per 1000 liters of water, including the cost of electricity and consumables and the annualized capital cost of the unit.” (WHO)

Large scale urban UV wastewater treatment is performed in cities such as Edmonton, Alberta. The use of ultraviolet light has now become standard practice in most municipal wastewater treatment processes. Effluent is now starting to be recognised as a valuable resource, not a problem that needs to be dumped. Many wastewater facilities are being renamed as water reclamation facilities, and whether the waste water is being discharged into a river, being used to irrigate crops, or injected into an aquifer for later recovery. Ultraviolet light is now being used to ensure water is free from harmful organisms.

Aquarium and pond

Ultraviolet sterilizers are often used in aquaria and ponds to help control unwanted microorganisms in the water. Continuous sterilization of the water neutralizes single-cell algae and thereby increases water clarity. UV irradiation also ensures that exposed pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. UV irradiation can also have a positive impact on an Aquariums Redox balance
Aquarium and pond sterilizers are typically small, with fittings for tubing that allows the water to flow through the sterilizer on its way from a separate external filter or water pump. Within the sterilizer, water flows as close as possible to the ultraviolet light source. Water pre-filtration is critical so as to lower water turbidity which will lower UVC penetration. Many of the better UV Sterilizers have long dwell times and limit the space between the UVC source and the inside wall of the UV Sterilizer device.

Laboratory hygiene

UVGI is often used to disinfect equipment such as safety goggles, instruments, pipettes, and other devices. Lab personnel also disinfects glassware and plasticware this way. Microbiology laboratories use UVGI to disinfect surfaces inside biological safety cabinets (“hoods”) between uses.

Food and beverage protection

Since the FDA issued a rule in 2001 requiring that virtually all fruit and vegetable juice producers follow HACCP controls, and mandating a 5-log reduction in pathogens, UVGI has seen some use in sterilization of fresh juices such as fresh-pressed apple cider.

Categories : Science and Industry Updates

Coming in 2013: The Myron L PoolPro PS9TK –

Posted by 18 Jan, 2013

Tweet                            For Pool Professionals The PoolPro is a comprehensive high performance tool designed to simplify pool and spa water quality control for the pool professional. Both PoolPro models – the PS6 and the PS9TK feature innovative user-friendly features and functions that make […]



PoolPro PS9TK and PoolPro PS6














For Pool Professionals

The PoolPro is a comprehensive high performance tool designed to simplify pool and spa water quality control for the pool professional. Both PoolPro models – the PS6 and the PS9TK feature innovative user-friendly features and functions that make it easy to manage parameters critical to disinfection, water balance, system maintenance and compliance.

New! Fce FAC Readings

FCE function reports FAC quickly and accurately by measuring ORP, the chemical characteristic of chlorine that directly reflects its effectiveness, cross referenced with pH. Both DPD kits and colorimeters may tell the user the FAC value of the sample in the test tube, but since the chemistry of that sample is quite different from the source water being analyzed, the results are imprecisely related to actual disinfection power.

FCE function measures the real, unaltered chemistry of source water, including moment-to-moment changes in that chemistry.

FCE can be used for other types of oxidizing germicides and will track the effect of additives, such as cyanuric acid, that degrade chlorine effectively without changing the actual concentration of free available chlorine present.

In-Cell Titration Functions

The PS9TK adds the ability to perform in-cell conductometric titrations that provides a convenient way to determine alkalinity, hardness and LSI in the field. This eliminates the need to collect and transport samples to another location for analysis. User intuitive display prompts guide you through titration procedures from start to finish. All required reagents and equipment are included in the PS9 titration kit.

Water Balance Analysis

The PS9TK features both an LSI Calculator and an LSI Titration measurement mode. The Calculator allows you to perform what-if scenarios to predict how changes in solution parameters would affect the water balance of a system. The titration measurement function allows you to accurately calculate a saturation index value of a specific solution to determine whether the solution is balanced, scaling or corrosive.

Hardness Unit Conversion The Hardness and LSI Titrations and LSI Calculator functions allow you to set the hardness unit preference to either grains of hardness or ppm CaCO3 according to your needs.

System Validation & Calibration

The PoolPro provides a fast, precise, easy-to-use method of obtaining Oxidation Reduction Potential (ORP or REDOX) mV readings to check the true level of effectiveness of ALL sanitizers in any pool or spa. ORP objectively and precisely measures sanitizer ability to burn up, or oxidize, organic matter in the water. ORP can only be determined by an electronic instrument.

PoolPro ORP mV readings serve as a necessary check to ensure automatic ORP control systems are working properly. PoolPro also provides independent readings for recalibration and to detect system failure.

Saltwater Chlorine Generation

PoolPro provides a convenient one-touch test for Mineral/Salt concentration. This is ideal for saltwater systems where manual testing with separate instrumentation is necessary to ensure the proper amount of sodium chloride is present for chlorine generation in quantities specified for microbial disinfection. PoolPro can also be used to recalibrate equipment as part of regular maintenance.

Wireless Benefits

The optional bluDock™ accessory package is an integrated data solution for your record keeping requirements, eliminating the need for additional hardware, wires and hassle. Because the user never touches the data, there is little opportunity for data tampering and human error. bluDock software has an easy to use interface with user intuitive functions for storing, sorting and exporting data.

Simply the Best

PoolPro is lightweight, portable, buoyant, waterproof, easy-to-calibrate, and easy-to-use. Simply rinse and fill the cell cup by dipping the PoolPro in the water, then press the button of the parameter you wish to measure. You immediately get a standard, numerical digital readout — eliminating all subjectivity. And you can store up to 100 date-time-stamped readings in PoolPro’s non-volatile memory.

Watch for the product launch later this year.


Categories : Product Updates, Science and Industry Updates

Recent Papers in Water Treatment for Small/Decentralized Systems –

Posted by 12 Jan, 2013

TweetRecent Papers in Water Treatment for Small/Decentralized Systems Content Table Recent Papers in Water Treatment for Small/Decentralized Systems  Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries Appropriate wastewater treatment systems for developing countries: criteria and indictor assessment in Thailand A new paradigm for low-cost urban […]

Recent Papers in Water Treatment for Small/Decentralized Systems

Content Table

Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries

Journal of Water and Health Vol 07 No 3 pp 497–506 © IWA Publishing 2009 doi:10.2166/wh.2009.071

Link to Summary Page

Nadine Kotlarz, Daniele Lantagne, Kelsey Preston and Kristen Jellison

Department of Civil and Environmental Engineering, Lehigh University, 13 East Packer Avenue, Bethlehem, PA 18015, USA
Enteric Diseases Epidemiology Branch, US Centers for Disease Control and Prevention, 1600 Clifton Road, MS-A38, Atlanta, GA 30333, USA Tel.:             +1 404 639 0231       Fax: +1 404 639 2205 E-mail:


Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.9 million deaths per year. The Safe Water System (SWS) is a proven household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l-1 sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of three locally available water clarification mechanisms—cloth filtration, settling/decanting and sand filtration—to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. All three mechanisms reduced turbidity (cloth filtration -1–60%, settling/decanting 78–88% and sand filtration 57–99%). Sand filtration (P=0.002) and settling/decanting (P=0.004), but not cloth filtration (P=0.30), were effective at reducing chlorine demand compared with controls. Recommendations for implementing organizations based on these results are discussed.

Appropriate wastewater treatment systems for developing countries: criteria and indictor assessment in Thailand

Water Science & Technology—WST Vol 59 No 9 pp 1873–1884 © IWA Publishing 2009 doi:10.2166/wst.2009.215

Link to Summary Page

W. Singhirunnusorn and M. K. Stenstrom

Faculty of Environment and Resource Studies, Mahasarakham University, Kantharawichai District, Maha Sarakham Province 44150, Thailand E-mail:
Department of Civil and Environmental Engineering, UCLA, Los Angeles CA 90095, USA E-mail:


This paper presents a comprehensive approach with factors to select appropriate wastewater treatment systems in developing countries in general and Thailand in particular. Instead of focusing merely on the technical dimensions, the study integrates the social, economic, and environmental concerns to develop a set of criteria and indicators (C&I) useful for evaluating appropriate system alternatives. The paper identifies seven elements crucial for technical selection: reliability, simplicity, efficiency, land requirement, affordability, social acceptability, and sustainability. Variables are organized into three hierarchical elements, namely: principles, criteria, and indicators. The study utilizes a mail survey to obtain information from Thai experts—academicians, practitioners, and government officials—to evaluate the C&I list. Responses were received from 33 experts on two multi-criteria analysis inquiries—ranking and rating—to obtain evaluative judgments. Results show that reliability, affordability, and efficiency are among the most important elements, followed by sustainability and social acceptability. Land requirement and simplicity are low in priority with relatively inferior weighting. A number of criteria are then developed to match the contextual environment of each particular condition. A total of 14 criteria are identified which comprised 64 indicators. Unimportant criteria and indicators are discarded after careful consideration, since some of the indicators are local or site specific.

A new paradigm for low-cost urban water supplies and sanitation in developing countries

Water Policy Vol 10 No 2 pp 119–129 © IWA Publishing 2008 doi:10.2166/wp.2008.034

Link to Summary Page

Duncan Maraa and Graham Alabasterb

aCorresponding author. School of Civil Engineering, University of Leeds, Leeds LS2 9JT UK. Fax: +44-113-343-2243 E-mail:
bUnited Nations Human Settlements Programme, PO Box 30300, Nairobi, Kenya


To achieve the Millennium Development Goals for urban water supply and sanitation ~300,000 and ~400,000 people will have to be provided with an adequate water supply and adequate sanitation, respectively, every day during 2001–2015. The provision of urban water supply and sanitation services for these numbers of people necessitates action not only on an unprecedented scale, but also in a radically new way as “more of the same” is unlikely to achieve these goals. A “new paradigm” is proposed for low-cost urban water supply and sanitation, as follows: water supply and sanitation provision in urban areas and large villages should be to groups of households, not to individual households. Groups of households would form (even be required to form, or pay more if they do not) water and sanitation cooperatives. There would be standpipe and yard-tap cooperatives served by community-managed sanitation blocks, on-site sanitation systems or condominial sewerage, depending on space availability and costs and, for non-poor households, in-house multiple-tap cooperatives served by condominial sewerage or, in low-density areas, by septic tanks with on-site effluent disposal. Very poor households (those unable to afford to form standpipe cooperatives) would be served by community-managed standpipes and sanitation blocks.

Faecal bacterial indicators removal in various wastewater treatment plants located in Almendares River watershed (Cuba)

Water Science & Technology—WST Vol 58 No 4 pp 773–779 © IWA Publishing 2008 doi:10.2166/wst.2008.440

Link to Summary Page

Tamara Garcia-Armisen, Josué Prats, Yociel Marrero and Pierre Servais

Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Brussels, Belgium *Present address: MINT, Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050, Brussels, Belgium Tel.:            +3226291918       E-mail:
Dpto. de Microbiología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
Instituto Superior Politécnico José Antonio Echeverría, La Habana, Cuba


The Almendares River, located in Havana city, receives the wastewaters of more than 200,000 inhabitants. The high abundance of faecal bacterial indicators (FBIs) in the downstream stretch of the river reflects the very poor microbiological water quality. In this zone, the Almendares water is used for irrigation of urban agriculture and recreational activities although the microbiological standards for these uses are not met. Improvement of wastewater treatment is absolutely required to protect the population against health risk. This paper compares the removal of FBIs in three wastewater treatment plants (WWTPs) located in this watershed: a conventional facility using trickling filters, a constructed wetland (CW) and a solar aquatic system (SAS). The results indicate better removal efficiency in the two natural systems (CW and SAS) for all the measured parameters (suspended matters, biological oxygen demand, total coliforms, E. coli and enterococci). Removals of the FBIs were around two log units higher in both natural systems than in the conventional one. A longitudinal profile of the microbiological quality of the river illustrates the negative impact of the large conventional WWTP. This case study confirms the usefulness of small and natural WWTPs for tropical developing countries, even in urban and periurban areas.

Treatment of low and medium strength sewage in a lab-scale gradual concentric chambers (GCC) reactor

Water Science & Technology—WST Vol 57 No 8 pp 1155–1160 © IWA Publishing 2008 doi:10.2166/wst.2008.093

Link to Summary Page

L. Mendoza, M. Carballa, L. Zhang and W. Verstraete

Experimental Reproduction Centre (CEYSA), Agricultural Faculty, Technical University of Cotopaxi, Latacunga, Ecuador E-mail:
Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium E-mail:;;


One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165±24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26°C) and mesophilic (35°C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L·d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.

Use of modelling for optimization and upgrade of a tropical wastewater treatment plant in a developing country

Water Science & Technology Vol 56 No 7 pp 21–31 © IWA Publishing 2007 doi:10.2166/wst.2007.675

Link to Summary Page

D. Brdjanovic*, M. Mithaiwala** , M.S. Moussa*** , G. Amy* and M.C.M. van Loosdrecht**** 

*Department of Urban Water and Sanitation, UNESCO-IHE Institute for Water Education, Westvest 7, PO Box 3015, 2061 DA , Delft, The Netherlands (E-mail:
**Drainage Department, Surat Municipal Corporation, Muglisara, Surat , Gujarat, 395003, India (Email:
***Civil Engineering Department, Faculty of Engineering Mataria, Helwan , University, Egypt (Email:
****Department of Biochemical Engineering, Delft University of Technology, Julianalaan 67, 2628 BC , Delft, The Netherlands (Email:


This paper presents results of a novel application of coupling the Activated Sludge Model No. 3 (ASM3) and the Anaerobic Digestion Model No.1 (ADM1) to assess a tropical wastewater treatment plant in a developing country (Surat, India). In general, the coupled model was very capable of predicting current plant operation. The model proved to be a useful tool in investigating various scenarios for optimising treatment performance under present conditions and examination of upgrade options to meet stricter and upcoming effluent discharge criteria regarding N removal. It appears that use of plant-wide modelling of wastewater treatment plants is a promising approach towards addressing often complex interactions within the plant itself. It can also create an enabling environment for the implementations of the novel side processes for treatment of nutrient-rich, side-streams (reject water) from sludge treatment.

Ceramic silver-impregnated pot filters for household drinking water treatment in developing countries: material characterization and performance study

Water Science & Technology: Water Supply Vol 7 No 5-6 pp 9–17 © IWA Publishing 2007 doi:10.2166/ws.2007.142

Link to Summary Page

D. van Halem*, S.G.J. Heijman* , A.I.A. Soppe** , J.C. van Dijk* and G.L. Amy*** 

*Delft University of Technology, Stevinweg 1, 2628 CN , Delft, The Netherlands (E-mail:;
**Delft University of Technology & Kiwa Water Research, Groningenhaven 7, 3433 PE , Nieuwegein, The Netherlands (E-mail:
***Aqua for All Foundation, Groningenhaven 7, 3433 PE , Nieuwegein, The Netherlands (E-mail:
****UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX , Delft, The Netherlands (E-mail:


The ceramic silver-impregnated pot filter (CSF) is a low-cost drinking water treatment system currently produced in many factories worldwide. The objective of this study is to gather performance data to provide a scientific basis for organisations to safely scale-up and implement the CSF technology. Filters from three production locations are included in this study: Cambodia, Ghana and Nicaragua. The microstructure of the filter material was studied using mercury intrusion porosimetry and bubble-point tests. Effective pores were measured with a mean of 40 mm, which is larger than many pathogenic microorganisms. The removal efficiency of these microorganisms was measured by using indicator organisms; total coliforms naturally present in canal water, sulphite reducing Clostridium spores, E.coli K12 and MS2 bacteriophages. The removal of these organisms was monitored during a long-term study of several months in the laboratory. Ceramic silver impregnated pot filters successfully removed total coliforms and sulphite reducing Clostridium spores. High concentrations of Escherichia coli K12 were also removed, with log(10) reduction values consistently higher than 2. MS2 bacteriophages were only partially removed from the water, with significantly better results for filters without an impregnation of colloidal silver. During this study the main deficiency of the filter system proved to be the low water production; after 12 weeks of use all filter discharges were below 0.5 Lh-1, which is insufficient to provide drinking water for a family

Ceramic membranes for direct river water treatment applying coagulation and microfiltration

Water Science & Technology: Water Supply Vol 6 No 4 pp 89–98 © IWA Publishing 2006 doi:10.2166/ws.2006.906

Link to Summary Page

A. Loi-Brügger*, S. Panglisch*, P. Buchta*, K. Hattori**, H. Yonekawa**, Y. Tomita** and R. Gimbel*,***

*IWW Water Center, Moritzstr. 26, 45476 Mülheim, , Germany (E-mail:
**NGK Insulators Ltd., 2-56 Suda-cho, Nagoya, Aichi, , 467-8530, Japan (E-mail:
***Institut für Energie- und Umweltverfahrenstechnik, Universität Duisburg-Essen Bismarckstr. 90, 47057 Duisburg, , Germany (E-mail:


A new ceramic membrane has been designed by NGK Insulators Ltd., Japan, to compete in the drinking water treatment market. The IWW Water Centre, Germany, investigated the operational performance and economical feasibility of this ceramic membrane in a one year pilot study of direct river water treatment with the hybrid process of coagulation and microfiltration. The aim of this study was to investigate flux, recovery, and DOC retention performance and to determine optimum operating conditions of NGK’s ceramic membrane filtration system with special regards to economical aspects. Temporarily, the performance of the ceramic membrane was challenged under adverse conditions. During pilot plant operation river water with turbidities between 3 and 100 FNU was treated. Membrane flux was increased stepwise from 80–300 l/m2h resulting in recoveries between 95.9 and 98.9%. A DOC removal between about 20–35% was achieved. The pilot study and the subsequent economical evaluation showed the potential to provide a reliable and cost competitive process option for water treatment. The robustness of the ceramic membrane filtration process makes it attractive for a broad range of water treatment applications and, due to low maintenance requirements, also suitable for drinking water treatment in developing countries.

Related Publications

Public Private Partnerships in the Water Sector - Cledan Mandri-Perrott and David Stiggers
Publication Date: Mar 2013 – ISBN – 9781843393207

Designing Wastewater Systems According to Local Conditions - David M Robbins
Publication Date: Jan 2014 – ISBN – 9781780404769

Water Services Management and Governance - Tapio Katko, Petri S. Juuti, and Klaas Schwartz
Publication Date: Oct 2012 – ISBN – 9781780400228

Meeting the Challenge of Financing Water and Sanitation - Organisation for Economic Co-Operation and Development (OECD)
Publication Date: Nov 2011 – ISBN – 9781780400327

OECD Water Resources and Sanitation Set - Organisation for Economic Co-Operation and Development (OECD)
Publication Date: Nov 2011 – ISBN – 9781780400570

OECD Water Policy and Finance Set - Organisation for Economic Co-Operation and Development (OECD)
Publication Date: Nov 2011 – ISBN – 9781780400563 now ships to over 220 countries.


Categories : Case Studies & Application Stories, Science and Industry Updates

Reverse osmosis biofouling: Impact of feed channel spacer and biofilm development in spacer-filled channels –

Posted by 9 Jan, 2013

TweetIntroduction Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by […]


Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by a biofouling problem –a problem related to biological material development which forms a sticky layer on the membrane surface (Flemming, 1997; Baker and Dudley, 1998).

Continuous biofouling problems in RO lead to higher energy input requirement as an effect of increased biofilm resistance (Rf) and biofilm enhanced osmotic pressure (BEOP), lower quality of product water due to concentration polarization (CP) – increased concentration due to solutes accumulation on the membrane surface, (Herzberg and Elimelech, 2007), and thus significant increase in both operating and maintenance costs.

Recent studies and objectives

Recent studies show the importance of the operating conditions (e.g. flux and cross flow velocities) in RO biofouling. The presence of feed channel spacers has also been getting more attention as it may have adverse effects. A previous study (Chong et al., 2008) without feed channel spacers showed that RO biofouling was a flux driven process where higher flux increased fouling rate. It was also shown that biofouling caused a BEOP effect due to elevated CP of solutes at the membrane surface, thus resulted in loss of driving force. The BEOP effect was more severe at high flux and low crossflow operation.

In another recent study (Vrouwenvelder et al., 2009a) involving feed channel spacers suggested that flux did not affect fouling and biofouling was more severe when the crossflow velocity was higher. However, these studies were conducted on river water at low level of salinity and under no/very low flux conditions, which may suggested that BEOP effect was not observed in the above studies. These contradictory observations relating to the biofouling process in RO need to be systematically addressed as it is critical to understand the mechanism for sustainable operation of RO technology.

The objective of this study was to observe the impact of spacer towards RO biofouling as well as to investigate the development of biofilm in a spacer filled channel. The experiments were conducted at constant flux and biofouling was observed by the increase of transmembrane pressure (TMP). Observation with confocal light scanning microscope (CLSM) method was conducted to the fouled membrane and spacers to provide information of biofilm development inside the membrane module.

Materials and methods

A lab-scale set-up was arranged to resemble the real RO operation where experiments were performed with elevated salinity, high pressure, imposed flux, and permeation. The schematic diagram of the set-up is depicted in Figure 1. It is a fully-recycled system with two identical RO modules running in series. Feed solution contained constant amounts NaCl and nutrient broth (NB) to provide sufficient TOC level.

The study was conducted in the constant flux mode and biofouling was measured via the rise in TMP. A mass-flow controller was installed at the permeate side to maintain the amount of permeate withdrawn. A bacteria solution was injected into the system before the feed solution entered the RO modules and a set of microfilters (5 μm and 0.2 μm) were installed at downstream to prevent excess bacteria from entering the feed tank and turning the feed tank into an “active bioreactor”.


Model bacteria Pseudomonas aeruginosa (PAO1) was used in the experiment. Bacteria stock solution used in the biofouling tests was prepared in batch and the stock solution was replenished every 24 hours. Bacteria were grown in mixture of NB and NaCl solution where they were harvested after 24 hours and diluted into autoclaved salt solution. The concentration of bacteria was controlled and measured by optical density (OD) using UV spectrophotometer at 600 nm. Batch prepared bacteria stock solution has some advantages over using continuous feed from a chemostat (Chong et al., 2008). A more consistent and fresh bacteria load and without excess nutrient was introduced into the system as nutrient content was completely removed in the harvesting step.

Prior to every experiment, cut RO membranes (DOW Filmtec, BW-30) were soaked in Milli-Q water and sterilized in 70% ethanol solution. Similar pretreatment procedures were applied to membrane support layers and feed channel spacers prior every experiment. The spacers used in the experiments are obtained from unused Hydranautics LFC-1 spiral wound module (Figure 2).


The membranes were compacted at a maximum flux (~65 L/m2.h) overnight with Milli-Q water until a stable flux was achieved. Following compaction, the flux was set to the desired values and NaCl solution was added into the feed tank until the desired concentration was achieved. The system was let to mix for 1.5 hours. NB solution was then added into the feed tank to provide an average background nutrient concentration of 6.5 mg/L TOC. The system was allowed to well-mix for 1.5 hours.

The biofouling test was initiated by continuous injection of bacteria stock solution into the flow line at a dilution rate of 1:500 based on RO cross-flow rate. Biofilm was allowed to grow on the RO membranes. TMP rise due to biofouling was measured over time. The solution in the feed tank was removed and replaced with a fresh solution at the same NaCl and NB concentration twice per day in order to maintain the freshness level of the feed solution.

Upon completion of the fouling test, the RO system was cleaned with:
 Tap water adjusted to pH 2 with HNO3 for 1.5 hours
 Tap water adjusted to pH 11 with NaOH for 1.5 hours
 Flowing tap water for rinsing for 1.5 hours
 Final rinsing with Milli-Q water at unadjusted pH

The fouled membranes were removed from the RO cells for membrane autopsy. In this analysis, fluorescence staining methods and confocal laser scanning microscope (CLSM) were used to detect the biofilm.

Biofilms were prepared for CLSM by staining with the LIVE/DEAD BacLight Bacterial Viability Kits (Molecular Probes, L7012). It consists of SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide (PI). These stains possess different spectral characteristics and different ability to penetrate healthy bacterial cells. When used alone, the SYTO 9 stain generally labels all bacteria in a population — those with intact and damaged membranes. In contrast, propidium iodide penetrates only bacteria with damaged membranes, causing a reduction in the SYTO 9 stain fluorescence when both dyes are present. Thus, with an appropriate mixture of the SYTO 9 and propidium iodide stains, bacteria with intact cell membranes stain fluorescent green, whereas bacteria with damaged membranes stain fluorescent red.

Microscopic observation and image acquisition of biofilms were performed using a confocal laser scanning microscope (ZEISS, model LSM710), equipped with Argon laser at 488 nm and DPSS561-10 laser at 561 nm. Images were captured using confocal microscope bundled program ZEN 2009.

Results and discussions

The cross-flow velocity (CFV) in RO membrane operations is known to affect fouling rate. At higher CFV, the flow causes scouring effects which results in slower fouling (Koltuniewicz et al., 1995). On the other hand, experiments of RO modules without the presence of flux shows that a higher cross-flow velocity may increase biofouling due to more nutrients supply (Vrouwenvelder et al., 2009b).

In our study, the investigation was carried out by varying the cross-flow velocity (CFV) from
0.1, 0.17, to 0.34 m/s. The NaCl concentration used was constant at 2000 mg/L and the applied flux was constant at 35 LMH. TMP values were measured overtime and normalized to the initial TMP.


Figure 3 shows the normalized TMP profiles. Faster TMP rise was observed at lower CFV and both operation with and without spacer show similar profiles. The delay of TMP rise caused by spacer was quantified by measuring the time needed for the TMP to increase by 10 % (Table 1). The effect of spacer was higher at higher CFV where the percentage of the delay was 21.21 % and 42.87 % at 0.10 m/s and 0.17 m/s respectively. An interesting phenomenon was observed during the earlier TMP rise (0-3 days) where change in CFV gives little effect on TMP profiles. Similar phenomenon was observed for operation with and without spacer. A possible explanation for this phenomenon is that during this period bacterial attachment was dominant and therefore operation at constant flux gives similar initial TMP rise. Previous studies (Chong et al., 2008) have shown previously that membrane biofouling is a flux driven process where higher flux increases the TMP rise. However, their study did not include spacers and did not focus on initial TMP rise.

Table 1. The delay of biofouling rate caused by spacer at different CFV



The effect of different salt concentrations was also investigated. In this experiment the flux and CFV were fixed at 35 LMH and 0.17 m/s respectively. Figure 4 shows the normalized TMP profile of three different NaCl concentrations in the feed solution. When the feed channel spacer was absent it was very obvious that faster TMP rise was observed at higher salt concentration. This suggests that the effect of concentration polarization (CP) increases with the salt concentration and confirms the presence of the biofilm enhanced osmotic pressure (BEOP) effect (Herzberg and Elimelech, 2007; Chong et al., 2008). This phenomenon however, was less obvious when the spacer was present on the membrane. The spacer appears to provide flow eddies thus reducing the effect of CP and to be useful to prevent biofouling on the membrane which was indicated with slower TMP rise. The spacer gives bigger effect at higher salt concentration where the time to reach 10 % TMP rise was delayed by 30 % at 100 mg/L and 2000 mg/L NaCl, and 95.7 % at 4000 mg/L (Table 2).


4.2 Biofilm development in spacer-filled RO membrane channel The development of biofilm in spacer-filled channel was observed via microscopic and microscopic method. Macroscopic images are to show overall uniformity of biofilm distribution, while the microscopic images are able to show a more detailed biofilm patterns. All of the images in this study were taken from separate experiments as the samples were unable to be reused after analysis, however all the conditions for the experiments were maintained the same.

Figure 5 shows the macroscopic images of biofilm development. The biofilm sample on the membranes and spacers were stained with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) dye. CTC stains bacteria with respiration activity and stained cells appear in red colour. Analysis was done after 0, 3, 6, and 10 days, the condition was 35 LMH flux, 0.17 m/s CFV, and 4000 mg/L NaCl concentration. Longer experiment duration gives thicker and denser biofilm, which can be seen from higher red colour intensity. The biofilms have also shown overall uniformity across the membrane area where similar patterns were observed among each spacer squares.


Figure 5. Macroscopic images of biofilm development on membranes and spacers. (A) 0-day, (B) 3-day, (C) 6-day, (D) 10-day. Biofilms stained with CTC dye and images taken with SONY NEX-5 digital camera.

Confocal laser scanning microscope (CLSM) provides a more detailed analysis of biofilm development (Figure 6). Based on the images, it appears that biofilm was initiated on the membrane; it later covered more areas and started to appear on the spacer. Areas behind the attached filaments of the spacer fiber seem to be suitable for the initial bacterial attachments rather than the centre of the spacer. Biofilm build-up observed on areas under the detached filaments was caused by higher shear due to accelerated CFV. Our experiments confirmed that biofouling in RO is a flux driven process. A lower TMP rise was observed at lower flux, which means slower biofouling rate. This is also supported with the biofilm coverage data where less coverage was observed at lower flux.



From the findings above, several conclusions can be drawn. The hydrodynamic condition of the flow is affecting the biofouling process. Cross flow velocity (CFV) is an important parameter and lower fouling can be achieved at higher CFV. Having feed channel spacers on the membrane is advantageous as it provides a more well-mixed flow, reduces concentration polarization and reduces TMP increase. Biofilm enhanced osmotic pressure (BEOP) was another phenomenon observed in this study. Due to the BEOP effect, a faster TMP rise was achieved at higher salinity. However, with the presence of the spacer the BEOP effect was reduced significantly.

From our microscopic analysis of biofilm shows that initial bacterial deposition and biofilm development was started on the membrane especially on areas behind the attached spacer filaments. Biofilm develops over time to cover more areas and starts to grow on the spacer at the later stages. Imposed flux also influences the biofilm development where lower biofouling is achieved at lower flux.


Baker, J. S. and Dudley, L. Y. (1998), “Biofouling in membrane systems – a review”, Desalination, Vol. 118, No. 1-3, pp. 81-90.

Chong, T. H., Wong, F. S. and Fane, A. G. (2008), “The effect of imposed flux on biofouling in reverse osmosis: Role of concentration polarisation and biofilm enhanced osmotic pressure phenomena”, Journal of Membrane Science, Vol. 325, No. 2, pp. 840-850.

Flemming, H. C. (1997), “Reverse osmosis membrane biofouling”, Experimental Thermal and Fluid Science, Vol. 14, No. 4, pp. 382-391.

Herzberg, M. and Elimelech, M. (2007), “Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure”, Journal of Membrane Science, Vol. 295, No. 1-2, pp.

Koltuniewicz, A. B., Field, R. W. and Arnot, T. C. (1995), “Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline”, Journal of Membrane Science, Vol. 102, No. 1-3, pp. 193-207.

Suwarno, S. R., Puspitasari, V. L., Chong, T. H., Fane, A. G., Chen, X., Rice, S. A., Mcdougald, D. and Cohen, Y. (2010) “The hydrodynamic effect on biofouling in reverse osmosis membrane processes”, IWA International Young Water Professionals Conference, Sydney,

Vrouwenvelder, J. S., Hinrichs, C., Van Der Meer, W. G., Van Loosdrecht, M. C. and Kruithof, J. C. (2009b), “Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction”, Biofouling, Vol. 25, No. 6, pp. 543-555.

Wangnick (2005), 2004 Worldwide Desalting Plants Directory, Global Water Intelligence, Oxford, England.

Related Publications

Experimental Methods in Wastewater Treatment - M.C.M. van Loosdrecht, J. Keller, P.H. Nielsen, C.M. Lopez-Vazquez and D. Brdjanovic
Publication Date: Feb 2014 – ISBN – 9781780404745

Publication Date: Jan 2014 – ISBN – 9781780404769


Categories : Science and Industry Updates

10 Business New Year’s Resolutions –

Posted by 25 Dec, 2012

TweetTo help brighten your New Year, I have compiled a list of the top 10 New Year’s resolutions for business development – things you can do to dramatically help yourself, your brands and your company. 1. Experiment with nontraditional media Media isn’t about to stop proliferating or fragmenting. Marketers need to put a plan in […]

To help brighten your New Year, I have compiled a list of the top 10 New Year’s resolutions for business development – things you can do to dramatically help yourself, your brands and your company.

1. Experiment with nontraditional media

Media isn’t about to stop proliferating or fragmenting. Marketers need to put a plan in place to determine the nature, extent and return on an investment of something nontraditional.

2. Stop hating the sales people

Start treating the sales folks as marketing’s clients. Start mining your marketing database and giving information back to them. Show them how the information will help make them more money.

3. Lose your fear of numbers

Decide what you want to measure before you launch a campaign. It’s infinitely easier to explain your value to the boss with hardcore data, rather than offering nothing but your good name to back up major marketing decisions.

4. Use your relationships

Word-of-mouth is your best salesman – harness it with a robust referral program.  When purchasers and business owners talk, they talk about business. Make the next happy hour discussion about your company, your products, and your referral program.

Got an easy way to help build your customers’ business?  Share it! has a stockless reseller program that’s easy, effective, and risk-free. Believe me, we tell our customers.

5. Stop promoting your brands to death and start building them

Spend money on real marketing communications – rather than just promotions – to tell folks what your brand stands for. Give them good reasons to buy your products or services that have nothing to do with a special offer or freebie. Are your products as durable as Myron L meters?  Tell people!

6. Don’t specialize in only Partial Customer Satisfaction (PCS)

The University of Michigan‘s American Customer Satisfaction Index shows that the average cross-industry customer satisfaction score has fallen below 75% — basically a C grade. It goes without saying there is tremendous room for improvement here.

7. Walk a mile in your customers’ shoes

Get to know what makes your customers tick and what problems they have, and let insights about them drive your decisions.

8. Account-based marketing is always a sure thing

If you can’t get to anything else, make the time to hug your best customers. The fastest way to increase revenue is through customers who already know and love your brand.

9. Stop ignoring social media

It’s not going away soon, and there are some tangible, measurable results to be gained by using new marketing channels such as blogs, podcasts, RSS and video.

10. Monitor your online reputation

Today companies must closely watch their online reputation. Think about how you can put a system in place to monitor and react in case of a reputation crisis in the blogosphere.

All of us at Myron L Meters would like to take a moment to thank you for your business, and to wish you the best for 2013.  Our business nearly doubled in 2012 and we have you to thank. We have great things in store for the new year – new products, new partners, expanded international shipping, and more.  Let us know how we can be a better part of your growing business.


Material from Marketing Darwinism by Paul Dunay is licensed under a Creative Commons Attribution 3.0 United States License. Original found here:


Categories : Company News, Valued Customers

Measuring Free Chlorine –

Posted by 25 Nov, 2012

TweetChlorine Residuals The presence of free chlorine in drinking water indicates that: 1) a sufficient amount of chlorine was added to the water to inactivate most of the bacteria and viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during transport to the home, and during storage of water in the […]

Chlorine Residuals
The presence of free chlorine in drinking water indicates that: 1) a sufficient amount of chlorine was added to the water to inactivate most of the bacteria and viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during transport to the home, and during storage of water in the household. Because the presence of free residual chlorine in drinking water indicates the likely absence of disease-causing organisms, it is used as one measure of the potability of drinking water.

Adding Chlorine
When chlorine is added to water as a disinfectant, a series of reactions occurs. These reactions are graphically depicted later in this article. The first of these reactions occurs when organic materials and metals present in the water react with the chlorine and transform it into compounds that are unavailable for disinfection. The amount of chlorine used in these reactions is termed the chlorine demand of the water. Any remaining chlorine concentration after the chlorine demand is met is termed total chlorine. Total chlorine is further subdivided into: 1) the amount of chlorine that then reacts with nitrates present in the water and is transformed into compounds that are much less effective disinfectants than free chlorine (termed combined chlorine); and, 2) the free chlorine, which is the chlorine available to inactivate disease-causing organisms, and is thus a measure used to determine the potability of water.

For example, when chlorine is added to completely pure water the chlorine demand will be zero, and there will be no nitrates present, so no combined chlorine will be formed. Thus, the free chlorine concentration will be equal to the concentration of chlorine added. When chlorine is added to natural waters, especially water from surface sources such as rivers, organic material will exert a chlorine demand, and combined chlorine will be formed by reaction with nitrates. Thus, the free chlorine concentration will be less than the concentration of chlorine initially

Chlorine Addition Flow Chart

Testing Free Chlorine in Drinking Water

Testing free chlorine is recommended in the following circumstances:
• To conduct dosage testing in project areas
• To monitor and evaluate projects by testing stored drinking water in households

The goal of dosage testing is to determine how much sodium hypochlorite solution to add to water that will be used for drinking to maintain free chlorine residual in the water for the average time of storage of water in the household (typically 24 hours). This goal differs from the goal of infrastructure-based (piped) water treatment systems, whose aim is effective disinfection at the endpoints (i.e., water taps) of the system. The WHO recommends “a residual concentration of free chlorine of greater than or equal to 0.5 mg/litre after at least 30 minutes contact time at pH less than 8.0.” This definition is only appropriate for users who obtain water directly from a flowing tap. A free chlorine level of 0.5 mg/L can maintain the quality of water through a distribution network, but is not optimal to maintain the quality of the water when it is stored in the home in a bucket or jerry can for 24 hours.

1. At 1 hour after the addition of sodium hypochlorite solution to water there should be no more than 2.0 mg/L of free chlorine residual present (this ensures the water does not have an unpleasant taste or odor).
2. At 24 hours after the addition of sodium hypochlorite to water in containers that are used by families for water storage there should be a minimum of 0.2 mg/L of free chlorine residual present (this ensures microbiologically clean water).
This methodology is approved by the World Health Organization (WHO), and is graphically depicted below. The maximum allowable WHO value for free chlorine residual in drinking water is 5 mg/L. The minimum recommended WHO value for free chlorine residual in treated drinking water is 0.2 mg/L. CDC recommends not exceeding 2.0 mg/L due to taste concerns, and chlorine residual decays over time in stored water.

sample chlorine decay curve

1. Free Chlorine as an Indicator of Sanitizing Strength

Chlorine, which kills bacteria by way of its power as an oxidizing agent, is the most popular germicide used in water treatment. Chlorine is not only used as a primary disinfectant, but also to establish a sufficient residual level of Free Available Chlorine (FAC) for ongoing disinfection.

FAC is the chlorine that remains after a certain amount is consumed by killing bacteria or reacting with other organic (ammonia, fecal matter) or inorganic (metals, dissolved CO2, Carbonates, etc) chemicals in solution. Measuring the amount of residual free chlorine in treated water is a well accepted method for determining its effectiveness in microbial control.

The Myron L Company FCE method for measuring residual disinfecting power is based on ORP, the specific chemical attribute of chlorine (and other oxidizing germicides) that kills bacteria and microbes.

2. FCE Free Chlorine Unit

The 6PIIFCE is the first handheld device to detect free chlorine directly, by measuring ORP. The ORP value is converted to a concentration reading (ppm) using a conversion table developed by Myron L Company through a series of experiments that precisely controlled chlorine levels and excluded interferants.

Other test methods typically rely on the user visually or digitally interpreting a color change resulting from an added reagent-dye. The reagent used radically alters the sample’s pH and converts the various chlorine species present into a single, easily measured species. This ignores the effect of changing pH on free chlorine effectiveness and disregards the fact that some chlorine species are better or worse sanitizers than others.

The Myron L Company 6PIIFCE avoids these pitfalls. The chemistry of the test sample is left unchanged from the source water. It accounts for the effect of pH on chlorine effectiveness by including pH in its calculation. For these reasons, the Ultrameter II’s FCE feature provides the best reading-to-reading picture of the rise and fall in sanitizing effectivity of free available chlorine.

The 6PIIFCE also avoids a common undesirable characteristic of other ORP-based methods by including a unique Predictive ORP value in its FCE calculation. This feature, based on a proprietary model for ORP sensor behavior, calculates a final stabilized ORP value in 1 to 2 minutes rather than the 10 to 15 minutes or more that is typically required for an ORP measurement.

Categories : Application Advice, Science and Industry Updates

Water Hardness and LSI –

Posted by 2 Nov, 2012

Tweet Hard water is water that has high mineral content. Hard drinking water is generally not harmful to one’s health, but can pose serious problems in industrial settings, where water hardness is monitored to avoid costly breakdowns in boilers, cooling towers, and other equipment that handles water. In domestic settings, hard water is often indicated […]

Hard water is water that has high mineral content.

Hard drinking water is generally not harmful to one’s health, but can pose serious problems in industrial settings, where water hardness is monitored to avoid costly breakdowns in boilers, cooling towers, and other equipment that handles water. In domestic settings, hard water is often indicated by a lack of suds formation when soap is agitated in water. Wherever water hardness is a concern, water softening is commonly used to reduce hard water’s adverse effects.

Sources of hardness
Water’s hardness is determined by the concentration of multivalent cations in the water. Multivalent cations are cations (positively charged metal complexes) with a charge greater than 1+. Usually, the cations have the charge of 2+. Common cations found in hard water include Ca2+ and Mg2+. These ions enter a water supply by leaching from minerals within an aquifer. Common calcium-containing minerals are calcite and gypsum. A common magnesium mineral is dolomite (which also contains calcium). Rainwater and distilled water are soft, because they also contain few ions.

The following equilibrium reaction describes the dissolving/formation of calcium carbonate scales:
CaCO3 + CO2 + H2O ⇋ Ca2+ + 2HCO3−
Calcium carbonate scales formed in water-heating systems are called limescale.
Calcium and magnesium ions can sometimes be removed by water softeners.

Temporary hardness
Temporary hardness is a type of water hardness caused by the presence of dissolved bicarbonate minerals (calcium bicarbonate and magnesium bicarbonate). When dissolved, these minerals yield calcium and magnesium cations (Ca2+, Mg2+) and carbonate and bicarbonate anions (CO32-, HCO3-). The presence of the metal cations makes the water hard. However, unlike the permanent hardness caused by sulfate and chloride compounds, this “temporary” hardness can be reduced either by boiling the water, or by the addition of lime (calcium hydroxide) through the softening process of lime softening. Boiling promotes the formation of carbonate from the bicarbonate and precipitates calcium carbonate out of solution, leaving water that is softer upon cooling.

Permanent hardness
Permanent hardness is hardness (mineral content) that cannot be removed by boiling. When this is the case, it is usually caused by the presence of calcium and magnesium sulfates and/or chlorides in the water, which become more soluble as the temperature increases. Despite the name, the hardness of the water can be easily removed using a water softener, or ion exchange column.
Effects of hard water

With hard water, soap solutions form a white precipitate (soap scum) instead of producing lather. This effect arises because the 2+ ions destroy the surfactant properties of the soap by forming a solid precipitate (the soap scum). A major component of such scum is calcium stearate, which arises from sodium stearate, the main component of soap:
2 C17H35COO- + Ca2+ → (C17H35COO)2Ca

Hardness can thus be defined as the soap-consuming capacity of a water sample, or the capacity of precipitation of soap as a characteristic property of water that prevents the lathering of soap. Synthetic detergents do not form such scums.

Hard water also forms deposits that clog plumbing. These deposits, called “scale”, are composed mainly of calcium carbonate (CaCO3), magnesium hydroxide (Mg(OH)2), and calcium sulfate (CaSO4).[1] Calcium and magnesium carbonates tend to be deposited as off-white solids on the surfaces of pipes and the surfaces of heat exchangers. This precipitation (formation of an insoluble solid) is principally caused by thermal decomposition of bi-carbonate ions but also happens to some extent even in the absence of such ions. The resulting build-up of scale restricts the flow of water in pipes. In boilers, the deposits impair the flow of heat into water, reducing the heating efficiency and allowing the metal boiler components to overheat. In a pressurized system, this overheating can lead to failure of the boiler. The damage caused by calcium carbonate deposits varies depending on the crystalline form, for example, calcite or aragonite.
The presence of ions in an electrolyte, in this case, hard water, can also lead to galvanic corrosion, in which one metal will preferentially corrode when in contact with another type of metal, when both are in contact with an electrolyte. The softening of hard water by ion exchange does not increase its corrosivity per se. Similarly, where lead plumbing is in use, softened water does not substantially increase plumbo-solvency.

In swimming pools, hard water is manifested by a turbid, or cloudy (milky), appearance to the water. Calcium and magnesium hydroxides are both soluble in water. The solubility of the hydroxides of the alkaline-earth metals to which calcium and magnesium belong (group 2 of the periodic table) increases moving down the column. Aqueous solutions of these metal hydroxides absorb carbon dioxide from the air, forming the insoluble carbonates, giving rise to the turbidity. This often results from the alkalinity (the hydroxide concentration) being excesively high (pH > 7.6). Hence, a common solution to the problem is to, while maintaining the chlorine concentration at the proper level, raise the acidity (lower the pH) by the addition of hydrochloric acid, the optimum value being in the range of 7.2 to 7.6.

For the reasons discussed above, it is often desirable to soften hard water. Most detergents contain ingredients that counteract the effects of hard water on the surfactants. For this reason, water softening is often unnecessary. Where softening is practiced, it is often recommended to soften only the water sent to domestic hot water systems so as to prevent or delay inefficiencies and damage due to scale formation in water heaters. A common method for water softening involves the use of ion exchange resins, which replace ions like Ca2+ by twice the number of monocations such as sodium or potassium ions.

Health considerations
The World Health Organization says that “there does not appear to be any convincing evidence that water hardness causes adverse health effects in humans”.
Some studies have shown a weak inverse relationship between water hardness and cardiovascular disease in men, up to a level of 170 mg calcium carbonate per litre of water. The World Health Organization has reviewed the evidence and concluded the data were inadequate to allow for a recommendation for a level of hardness.

Recommendations have been made for the maximum and minimum levels of calcium (40–80 ppm) and magnesium (20–30 ppm) in drinking water, and a total hardness expressed as the sum of the calcium and magnesium concentrations of 2–4 mmol/L.

Other studies have shown weak correlations between cardiovascular health and water hardness.

Some studies correlate domestic hard water usage with increased eczema in children.

The Softened-Water Eczema Trial (SWET), a multicenter randomized controlled trial of ion-exchange softeners for treating childhood eczema, was undertaken in 2008. However, no meaningful difference in symptom relief was found between children with access to a home water softener and those without.

Hardness can be quantified by instrumental analysis. The total water hardness is the sum of the molar concentrations of Ca2+ and Mg2+, in mol/L or mmol/L units. Although water hardness usually measures only the total concentrations of calcium and magnesium (the two most prevalent divalent metal ions), iron, aluminium, and manganese can also be present at elevated levels in some locations. The presence of iron characteristically confers a brownish (rust-like) colour to the calcification, instead of white (the color of most of the other compounds).
Water hardness is often not expressed as a molar concentration, but rather in various units, such as degrees of general hardness (dGH), German degrees (°dH), parts per million (ppm, mg/L, or American degrees), grains per gallon (gpg), English degrees (°e, e, or °Clark), or French degrees (°f). The table below shows conversion factors between the various units.

The various alternative units represent an equivalent mass of calcium oxide (CaO) or calcium carbonate (CaCO3) that, when dissolved in a unit volume of pure water, would result in the same total molar concentration of Mg2+ and Ca2+. The different conversion factors arise from the fact that equivalent masses of calcium oxide and calcium carbonates differ, and that different mass and volume units are used. The units are as follows:

Parts per million (ppm) is usually defined as 1 mg/L CaCO3 (the definition used below). It is equivalent to mg/L without chemical compound specified, and to American degree.

Grains per Gallon (gpg) is defined as 1 grain (64.8 mg) of calcium carbonate per U.S. gallon (3.79 litres), or 17.118 ppm.

a mmol/L is equivalent to 100.09 mg/L CaCO3 or 40.08 mg/L Ca2+.

A degree of General Hardness (dGH or ‘German degree (°dH, deutsche Härte)’ is defined as 10 mg/L CaO or 17.848 ppm.

A Clark degree (°Clark) or English degrees (°e or e) is defined as one grain (64.8 mg) of CaCO3 per Imperial gallon (4.55 litres) of water, equivalent to 14.254 ppm.

A French degree (°F or f) is defined as 10 mg/L CaCO3, equivalent to 10 ppm. The lowercase f is often used to prevent confusion with degrees Fahrenheit.

Hard/soft classification
Because it is the precise mixture of minerals dissolved in the water, together with the water’s pH and temperature, that determines the behavior of the hardness, a single-number scale does not adequately describe hardness.

Langelier Saturation Index (LSI)
The Langelier Saturation Index (sometimes Langelier Stability Index) is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. In 1936, Wilfred Langelier developed a method for predicting the pH at which water is saturated in calcium carbonate (called pHs). The LSI is expressed as the difference between the actual system pH and the saturation pH:

LSI = pH (measured) — pHs
For LSI > 0, water is super saturated and tends to precipitate a scale layer of CaCO3.
For LSI = 0, water is saturated (in equilibrium) with CaCO3. A scale layer of CaCO3 is neither precipitated nor dissolved.
For LSI < 0, water is under saturated and tends to dissolve solid CaCO3.

If the actual pH of the water is below the calculated saturation pH, the LSI is negative and the water has a very limited scaling potential. If the actual pH exceeds pHs, the LSI is positive, and being supersaturated with CaCO3, the water has a tendency to form scale. At increasing positive index values, the scaling potential increases.
In practice, water with an LSI between -0.5 and +0.5 will not display enhanced mineral dissolving or scale forming properties. Water with an LSI below -0.5 tends to exhibit noticeably increased dissolving abilities while water with an LSI above +0.5 tends to exhibit noticeably increased scale forming properties.
It is also worth noting that the LSI is temperature sensitive. The LSI becomes more positive as the water temperature increases. This has particular implications in situations where well water is used. The temperature of the water when it first exits the well is often significantly lower than the temperature inside the building served by the well or at the laboratory where the LSI measurement is made. This increase in temperature can cause scaling, especially in cases such as hot water heaters. Conversely, systems that reduce water temperature will have less scaling.

Hard water in the United States
More than 85% of American homes have hard water. The softest waters occur in parts of the New England, South Atlantic-Gulf, Pacific Northwest, and Hawaii regions. Moderately hard waters are common in many of the rivers of the Tennessee, Great Lakes, and Alaska regions. Hard and very hard waters are found in some of the streams in most of the regions throughout the country. The hardest waters (greater than 1,000 ppm) are in streams in Texas, New Mexico, Kansas, Arizona, and southern California.

Measuring Hardness and LSI
The Myron L Ultrameter III 9PTK measures water hardness and LSI, as well as 7 other water quality parameters.
Measures 9 Parameters: Conductivity, Resistivity, TDS, Alkalinity, Hardness, LSI, pH, ORP/Free Chlorine, Temperature
LSI Calculator for hypothetical water balance calculations
Wireless data transfer capability with bluDock option
Auto-ranging delivers increased resolution across diverse applications
Adjustable Temperature Compensation and Cond/TDS conversion ratios for user-defined solutions
Nonvolatile memory of up to 100 readings for stored data protection
Date & time stamp makes record-keeping easy
pH calibration prompts alert you when maintenance is required
Auto-off minimizes energy consumption
Low battery indicator
(Includes instrument with case and solutions)

Watch the video here:

Material from Wikipedia shared under the Creative Commons Attribution-ShareAlike License

Categories : Science and Industry Updates

The Science of UV Water Treatment –

Posted by 22 Oct, 2012

Tweet“Thousands have lived without love, not one without water” W.H.Auden Using ultraviolet radiation to treat contaminated water started in Europe in the early 1900′s. In 1904 the first UV quartz lamp was created. Its original purpose was to treat vitamin D deficiencies but later became an integral part of most current UV water treatment systems. […]

“Thousands have lived without love, not one without water” W.H.Auden

Using ultraviolet radiation to treat contaminated water started in Europe in the early 1900′s. In 1904 the first UV quartz lamp was created. Its original purpose was to treat vitamin D deficiencies but later became an integral part of most current UV water treatment systems. These systems did not become available until 1981 and were not widely used until 1992. The most promising use of UV treatment is in developing countries where water borne illnesses are so prevalent. Several low cost and low maintenance systems have been created and are currently being used in villages in India and Africa providing safe water to some of the poorest communities. The biggest hurdle for the widespread use of these systems is that they need a power supply to operate. Each of these systems follows the same simple design: water flows into the housing unit around the UV low pressure mercury lamps – maximum water depth is around 3 inches to insure the UV radiation can saturate the water to a high enough level that the bacteria and viruses within are neutralized. The water must be filtered before entering the UV treatment system as turbidity and dissolved solids in the water cuts down on the UV penetration into the water column.

The Science of UV treatment

How is UV radiation so effective at neutralizing bacteria and other micro-organisms? UV radiation is in the light spectrum below visible light and above x-rays. It has a wave length between 40-400nm. UVC 220-290nm is the portion of the UV spectrum used for anti bacterial purposes and has the ability to travel it the bodies of small organisms such as bacteria, viruses, yeasts and molds. The UV radiation attacks the DNA chain of these organisms causing them to loose their ability to reproduce effectively killing them. One down side to UV water treatment is that the deceased organisms will remain in the water without additional filtering to remove them.

Aftim Acra & Solar Water Disinfection

Aftim Acra is an active researcher and former professor of environmental engineering at the American University in Beirut. Acra and colleagues began research of solar water disinfection in 1979 and showed that the sun’s heat and radiation is capable of killing pathogens. The sun supplies infrared radiation, which heats the water and can kill some bacteria, as well as ultraviolet radiation, which scrambles the DNA of the bacteria to disable their reproduction functions. Depending on the temperature and clearness of the sky, solar disinfection of water in a plastic bottle can take as little as six hours of direct sunlight. SODIS (solar water disinfection) is a strategy of disinfecting water promoted by the Swiss Federal Institute of Aquatic Sciences and Technology. The SODIS organization works to give people the opportunity and means to have clean water. They work primary in South America, Asia, and Africa where there are high concentrations of people living without adequate water and water systems. The disinfection method they advocate involves filling a transparent container with contaminated water.

One problem in this method is its current reliance on plastic bottles. When the plastic these bottles are made from (Polyethylene terephthalate) react with the heat & UV radiation from the sun, chemicals in the plastic can be absorbed into the water. Another problem with the use of plastic bottles is the threads in the cap and spout of the bottle. This is one spot on the bottle that cannot be disinfected by the sun because the cap is covering it! So if the bottle is used to scoop up water from a dirty source, and then disinfected with the SODIS method, the water will only be recontaminated by the threads of the bottle once poured out. It is important to keep in mind of any possible points of recontamination (i.e. dirty hands, dirty containers).

Below is a list of some of the bacteria,viruses, molds etc. that UV treatment can remove from water and the ultraviolet dosage required to destroy greater than 99.9% of micro-organisms (measured in microwatt seconds per centimeter squared).

BACTERIA microwatt sec/cm2
Agrobacterium tumefaciens
Bacillus anthracis
Bacillus megaterium (vegatative)
Bacillus subtills (vegatative)
Clostridium Tetani
Corynebacterium diphtheria’s
Escherichia coli
Legionella bozemanii
Legionella dumoffil
Legionella micdadel
Legionella longbeachae
Legionella pneumophilla (legionnaires disease)
Leptospira intrrogans (Infectious Jaundice)
Mycobaterium tuberculosis
Neisseria catarrhalls
Proteus vulgaris
Pseudomonas seruginosa (laboratory strain)
Pseudomonas aeruginosa (environmental strain)
Rhodospirllum rubrum
Salmonella enteritidis
Salmonella paratyphi (enteric fever)
Salmonella typhimunum
Salmonella typhosa (typhoid fever)
Sarcina Lutea
Seratia marcescens
Shigella dysenterai (dysentery)
Shigella Flexneri (dysentery)
Shigella sonnell
Staphylococcus epidermidis
Staphylococcus aureus
Streptococcus faecalls
Streptococcus hemolyicus
Streptococcus lactis
Viridans streptococci
Vibrio cholerae
YEAST microwatt sec/cm2
Bakers yeast
Brewers yeast
Common yeast cake
MOLD SPORES microwatt sec/cm2
Penicillum digitatum (olive)
Penicillum expensum (olive)
PeniciHum roqueforti (green)
ALGAE microwatt sec/cm2
Chlorella vulgaris (algae) 22000
VIRUSES microwatt sec/cm2
Bacteriophage (E. coli)
Hepatitis virus
Influenza virus
Pollovirus (pllomyelitis)




























UV Time Line

1900- UV radiation was used in some European countries to treat contaminated water.

1904- Heraeus, a medical company then, developed first UV quartz lamp in order to treat vitamin D deficiencies. That lamp developed into the tanning beds of today and into UV water treatment as well.

1976-UV water treatment was used in disinfection of aquatic systems in zoos and aquariums and in pools.It was also used in to disinfect potable and non potable water in ships.

1979- Sensors developed to monitor dose of UV to ensure a sufficient amount for disinfection. Amalgam lamps developed; which use mercury bound with bismuth and indium2, instead of just liquid mercury.

1981- Wide acceptance of UV treatment for drinking water.

1992- UV disinfection in wastewater markets open up.

1997- Aquafine Corp., a leading designer and manufacturer of high quality industrial ultraviolet water treatment systems, has nearly tripled its growth over the past four years. International business accounts for 60 percent of that growth. Aquafine now designs, manufactures and installs state-of-the-art ultraviolet water treatment systems.

2000-American Water Works Association program that investigated effectiveness of UV systems on cryptosporidium. An outbreak in Milwaukee, Wisconsin occurred in the early 1990’s Chlorination alone did not offer sufficient protection against cryptosporidium, however, UV treatment does. Sales of UV drinking water disinfection systems in the USA increased.

2001-Combination systems are being developed, a mixture of chlorination, UV, membrane filtration, reverse osmosis and ozone oxidation.

2005- The current market for UV purification systems is 30% of the total market for drinking water treatment technologies; this number is expected to rise dramatically over the next few years due to several new strict standards the U.S. Environmental Protection Agency will finalize in 2006.

2006- New EPA regulations will require drinking water to be protected against cryptosporidium and other pathogens (which chlorine can’t do effectively) and to reduce disinfection by products commonly associated with chlorine and ozone treatments.

2009- For more than 60 years, UV light has been used effectively for disinfection and purification in water treatment plants. UV light technology also is used widely in hospitals, laboratories, food and drug facilities, and in a number of consumer products.


Shared via Creative Commons Attribution ShareAlike license. Original information found here:

Categories : Science and Industry Updates