Using MyronLMeters.com

Posted by 7 Apr, 2014

Tweet  Using MyronLMeters.com Stay up-to-date with an ever-changing world of water treatment regulations, industry events, news, and science at MyronLMeters.com. We believe that a strong, well-informed water industry network is essential. We’ve put together user-friendly pages for water treatment professionals with science updates, networking, news, government resources, associations, and publications for both North American and […]

 

Using MyronLMeters.com

Stay up-to-date with an ever-changing world of water treatment regulations, industry events, news, and science at MyronLMeters.com. We believe that a strong, well-informed water industry network is essential. We’ve put together user-friendly pages for water treatment professionals with science updates, networking, news, government resources, associations, and publications for both North American and International water industry professionals. If you have suggestions or events you’d like to see on our website, please let us know.

Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
Google Plus
Google Plus
YouTube
YouTube
Pinterest
Pinterest
MyronLMeters.com is the premier online distributor of Myron L water quality test instruments. We make it easy to shop for your water quality testing instruments online. We understand that in order to make a buying decision you need more than just a recommendation or a product description. At MyronLMeters.com you will find detailed information about every product, including demo videos and customer reviews.Since the 1960s, Myron L products have led the industry in high quality, simple to operate conductivity and pH instrumentation for municipal, commercial and industrial water quality control, chemical concentration testing and process control. Today, Myron L meters are more convenient than ever to research and buy right here at MyronLMeters.com. We provide the background, insight, product imagery and specifications you need to make the right choice–all in one convenient online store.
 

VIDEOS
We’re working to keep adding useful how-to videos about calibration, maintenance and measurment.
 

RESOURCES PAGE
Stay up-to-date with an ever-changing world of water treatment regulations, industry events, news, and science with the Water Industry Resources page at MyronLMeters.com.
 

SCIENCE AND INDUSTRY BLOG
We continually update our blog with great information about application advice, industry news, technical tips, training videos, promotional offers, and science.
 

WATER INDUSTRY NEWS
The latest in the world of water from our news website WaterIndustryNews.com. Subscribe and have it delivered to your smartphone or email every Friday.

Copyright © , All rights reserved.

Our mailing address is:

 

Categories : Company News, MyronLMeters.com Service

Using MyronLMeters.com

Posted by 7 Apr, 2014

Tweet Using MyronLMeters.com Stay up-to-date with an ever-changing world of water treatment regulations, industry events, news, and science at MyronLMeters.com. We believe that a strong, well-informed water industry network is essential. We’ve put together user-friendly pages for water treatment professionals with science updates, networking, news, government resources, associations, and publications for both North American and […]



Using MyronLMeters.com

Stay up-to-date with an ever-changing world of water treatment regulations, industry events, news, and science at MyronLMeters.com. We believe that a strong, well-informed water industry network is essential. We’ve put together user-friendly pages for water treatment professionals with science updates, networking, news, government resources, associations, and publications for both North American and International water industry professionals. If you have suggestions or events you’d like to see on our website, please let us know.

Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
Google Plus
Google Plus
YouTube
YouTube
Pinterest
Pinterest
MyronLMeters.com is the premier online distributor of Myron L water quality test instruments. We make it easy to shop for your water quality testing instruments online. We understand that in order to make a buying decision you need more than just a recommendation or a product description. At MyronLMeters.com you will find detailed information about every product, including demo videos and customer reviews.Since the 1960s, Myron L products have led the industry in high quality, simple to operate conductivity and pH instrumentation for municipal, commercial and industrial water quality control, chemical concentration testing and process control. Today, Myron L meters are more convenient than ever to research and buy right here at MyronLMeters.com. We provide the background, insight, product imagery and specifications you need to make the right choice—all in one convenient online store.
 

VIDEOSWe’re working to keep adding useful how-to videos about calibration, maintenance and measurment.
 

RESOURCES PAGEStay up-to-date with an ever-changing world of water treatment regulations, industry events, news, and science with the Water Industry Resources page at MyronLMeters.com.
 

SCIENCE AND INDUSTRY BLOGWe continually update our blog with great information about application advice, industry news, technical tips, training videos, promotional offers, and science.
 

WATER INDUSTRY NEWSThe latest in the world of water from our news website WaterIndustryNews.com. Subscribe and have it delivered to your smartphone or email every Friday.


Copyright © , All rights reserved.

Our mailing address is:

 

Categories : Uncategorized

Where You Can Find Myron L Meters: MyronLMeters.com

Posted by 7 Apr, 2014

Tweet Where You Can Find us How to Find Myron L Meters You’ll find us in some of the largest dialysis clinics in America. We’re testing some great pools. We’re testing soil on the farm. We’re helping keep your drinking water clean. We’re at NASA’s Marshall Space Flight Center. And we’re always here when you […]

Where You Can Find us


How to Find Myron L Meters

You’ll find us in some of the largest dialysis clinics in America.
We’re testing some great pools.
We’re testing soil on the farm.
We’re helping keep your drinking water clean.
We’re at NASA’s Marshall Space Flight Center.
And we’re always here when you need us, with great products, technical support, literature, videos, and industry resources. Clicking any picture will help you find us.
Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
YouTube
YouTube
Google Plus
Google Plus
Pinterest
Pinterest

Copyright © , All rights reserved.Our mailing address is:

 

Categories : Company News

Where You Can Find Myron L Meters: MyronLMeters.com

Posted by 7 Apr, 2014

Tweet Where You Can Find us How to Find Myron L Meters You’ll find us in some of the largest dialysis clinics in America. We’re testing some great pools. We’re testing soil on the farm. We’re helping keep your drinking water clean. We’re at NASA’s Marshall Space Flight Center. And we’re always here when you […]



Where You Can Find us



How to Find Myron L Meters

You’ll find us in some of the largest dialysis clinics in America.
We’re testing some great pools.
We’re testing soil on the farm.
We’re helping keep your drinking water clean.
We’re at NASA’s Marshall Space Flight Center.
And we’re always here when you need us, with great products, technical support, literature, videos, and industry resources. Clicking any picture will help you find us.
Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
YouTube
YouTube
Google Plus
Google Plus
Pinterest
Pinterest


Copyright © , All rights reserved.Our mailing address is:

 

Categories : Uncategorized

Ultrameter: Measuring Conductivity, TDS and Resistivity: MyronLMeters.com

Posted by 1 Mar, 2014

TweetPlease note:  These procedures apply to Ultrameters, Pool Pros, Tech Pros, and D-4 and D-6 dialysate meters. Measuring Conductivity & TDS 1. Rinse cell cup 3 times with sample to be measured. (This conditions the temperature compensation network and prepares the cell.) 2. Refill cell cup with sample. 3. Press COND or TDS. 4. Take […]

Please note:  These procedures apply to Ultrameters, Pool Pros, Tech Pros, and D-4 and D-6 dialysate meters.

Measuring Conductivity & TDS

1. Rinse cell cup 3 times with sample to be measured. (This conditions

the temperature compensation network and prepares the cell.)

2. Refill cell cup with sample.

3. Press COND or TDS.

4. Take reading. A display of [- - - -] indicates an over range condition.

Measuring Resistivity

Resistivity is for low conductivity solutions. In a cell cup the value may drift from trace contaminants or absorption from atmospheric gasses, so measuring a flowing sample is recommended.

1. Ensure pH protective cap is secure to avoid contamination.

2. Hold instrument at 30° angle (cup sloping downward).

3. Let sample flow continuously into conductivity cell with no aeration.

4. Press RES key; use best reading.

NOTE: If reading is lower than 10 kilohms display will be dashes: [ - - - - ]. Use Conductivity.

If you have further questions, please watch our Ultrameter 6P product overview video here: http://blog.myronlmeters.com/ultrameter-ii-product-review/

 IV. AFTER USING THE ULTRAMETER II

Maintenance of the Conductivity Cell

Rinse out the cell cup with clean water. Do not scrub the cell. For oily films, squirt in a foaming non-abrasive cleaner and rinse. Even if a very active chemical discolors the electrodes, this does not affect the accuracy; leave it alone.

Myron L Meters is the premier internet retailer of Myron L meters, solutions, parts and accessories. Save 10% on the Ultrameter II 6PFCe when you order online at MyronLMeters.com.

Categories : Application Advice, Technical Tips

Thank You Myron L Meters Customers 2013: MyronLMeters.com

Posted by 7 Dec, 2013

Tweet Myron L Meters is proud to be the premier internet retailer of Myron L Ultrameters, Ultrapens, and other fine products. Myron L meters have a well-earned reputation for being accurate, reliable, and easy-to-use. We’d like to thank the following 2013 customers who ordered for the first time through our MyronLMeters.com website, as well as the hundreds […]

Myron L Meters is proud to be the premier internet retailer of Myron L Ultrameters, Ultrapens, and other fine products. Myron L meters have a well-earned reputation for being accurate, reliable, and easy-to-use. We’d like to thank the following 2013 customers who ordered for the first time through our MyronLMeters.com website, as well as the hundreds not listed here. Thank you for your business.

COMPANIES
NESTLE
COCA-COLA
DUPONT
TARGET
INTERNATIONAL PAPER
PANASONIC
SIERRA NEVADA
BAYER
GENERAL MILLS
PEPSI
FUJIFILM
CULLIGAN
VEOLIA
NALCO
GLAXO SMITH KLINE
BP
DUPONT
MICHELIN
ALCOA
TYSON
SMUCKER’S
GOOGLE
DUKE ENERGY
HILLSHIRE FARMS

MEDICAL ORGANIZATIONS
DAVITA
FRESENIUS
UC IRVINE MEDICAL CENTER
RED BUD REGIONAL HOSPITAL
HALIFAX REGIONAL HOSPITAL
ELIK DIALYSIS CENTER

GOVERNMENT ORGANIZATIONS
OAK RIDGE NATIONAL LABORATORY
BROOKHAVEN NATIONAL LABORATORY
PACIFIC NORTHWEST NATIONAL LABORATORY
FERMILAB
US NAVY
VETERANS ADMINISTRATION

EDUCATIONAL INSTITUTIONS
USC
BRYN MAWR
TULANE
UNIVERSITY OF ARKANSAS
IDAHO STATE UNIVERSITY
UNIVERSITY OF DELAWARE
UNIVERSITY OF COLORADO
UNIVERSITY OF WYOMING
UNIVERSITY OF REDLANDS
LAWRENCE UNIVERSITY

We hope that Myron L Meters has helped your organization continue its fine work. Thanks from the Myron L Meters team and have a great 2014!

Categories : MyronLMeters.com Valued Customers

End of Year Sale

Posted by 4 Dec, 2013

Tweethttp://us2.campaign-archive1.com/?u=8c3e1105d354c0c814b53a0e0&id=f52da0f404&e=UNIQID

http://us2.campaign-archive1.com/?u=8c3e1105d354c0c814b53a0e0&id=f52da0f404&e=UNIQID

Categories : Deal of the Month, MyronLMeters.com Valued Customers

Electrical Conductivity Testing Applied to the Assessment of Freshly Collected Kielmeyera coriacea Mart. Seeds: MyronLMeters.com

Posted by 4 Jun, 2013

Tweet  MyronLMeters.com brings you the latest in conductivity measurement research like the article below.  Please click here for accurate, reliable, conductivity meters. Abstract Assessment of seed vigor has long been an important tool of seed quality control programs. The conductivity test is a promising method for assessment of seed vigor, but proper protocols for its […]

 

MyronLMeters.com brings you the latest in conductivity measurement research like the article below.  Please click here for accurate, reliable, conductivity meters.

Abstract

Assessment of seed vigor has long been an important tool of seed quality control programs. The conductivity test is a promising method for assessment of seed vigor, but proper protocols for its execution have yet to be established. The objective of this study was to assess the efficiency of electrical conductivity (EC) testing as a means of assessing the viability of freshly collected Kielmeyera Coriacea Mart. seeds. The test was performed on individual seeds rather than in a bulk configuration. Seeds were soaked for different periods (30 min, 90 min, 120 min., 180 min, and 240 min) at a constant temperature of 25°C. Conductivity was then measured with a benchtop EC meter.

1. Introduction

Seeds are the primary factor of the seedling production process, despite their minor contribution to the end cost of each seedling. In order to estimate the success rate of seedling production, it is essential that seed characteristics such as vigor and germinability be known [1].

The importance of knowing the characteristics of Brazilian forest species to safer and more objective management of seedling production cannot be overstated. However, such studies are scarce, particularly in light of the vast number of species with this potential [2]. Given the intensity of anthropogenic pressure and the importance of rehabilitating disrupted or degraded environments, in-depth research of forest species is warranted.

Routine methods used for determination of seed quality and viability include germination testing and the tetrazolium test. Methods such as measurement of soak solution pH, electrical conductivity, and potassium content of leachate, all based on the permeability of the cell membrane system, are increasingly being employed in the assessment of seed vigor, as they are reliable and fast and can thus speed the decision making process.

Electrical conductivity testing, as applied to forest seeds, has yet to be standardized. Studies conducted thus far have focused on assessment of seed soaking times, which may range from 4 to 48 hours. Even at 48 hours, the conductivity test is considered a rapid technique as compared to the germination test, which, despite its status as a widespread and firmly established method, can take anywhere from 30 to 360 days to yield results (depending on species), and is limited by factors such as dormant seeds.

The total concentration of electrolytes leached by seeds during soaking has long been assessed indirectly, mostly through the conductivity test, which takes advantage of the fact that inorganic ions make up a substantial portion of these electrolytes [3–5].

Rapid assessment of seed quality allows for preemptive decision-making during harvest, processing, sale and storage operations, thus optimizing use of financial resources throughout these processes.

K. coriacea Mart. is a species of the Clusiaceae (Guttiferae) family popularly known in Brazil as pau-santo (Portuguese for “holy wood”), due to its properties as a medicinal and melliferous plant and as a source of cork. In traditional Brazilian medicine, the leaves are used as an emollient and antitumor agent, and the resin as a tonic and in the treatment of toothache and various infections. The fruits are used in regional crafts and flower arrangements. Even if the dye is of the leaves and bark. The trunk provides cork [6].

K. coriaceae specimens grow to approximately 4 meters in height. The flowering period extends from January to April and the fruiting period from May to September, and seed collection can take place from September onwards. Leaves are alternate, simple, oval to elliptical, coriaceous, and clustered at the end of the branches, and feature highly visible, pink midribs. A white to off-white latex is secreted in small amounts upon removal of leaves. Flowers are white to pale pink in color, large, fragrant, with many yellow stamens and are borne in short clusters near the apex of the branches. Seedling production requires that seeds be sown shortly after collection.

In the fruit are found 60 to 80 seeds with anemochoric. The seed varies from round to oblong, winged at the ends, light brown color, has integument thin and fragile, with smooth texture, the sizes range from 4.3 to 5.6 cm long, 1.3 to 1.9 cm wide, and 0.2 to 0.5 centimeter thick. The individual weight of the seeds ranges from. 112 to.128 grams. Nursery radicle emission occurred at 7 days and the germination rate was 90%. Germination occurs within 7 to 10 days. The species is slow growing, both in the field and in a nursery setting [7].

The present study sought to assess the applicability of the conductivity test to freshly collected K. coriacea Mart. seeds by determining the optimal soak time for performance of the test and comparing results obtained with this method against those obtained by tetrazolium and germination testing of seeds from the same batch.

2. Materials and Methods

2.1. Seed Collection

Seeds were collected in the cerrado sensu stricto, in SCA (Clean Water Farm), area of study at the University of Brasília (UNB) in August 2010, matrixes marked with the aid of GPS, after the period of physiological maturation of the seeds. The collection of fruits was directly from the tree, with the help of trimmer, then the seeds were processed and stored in paper bags at room temperature in the laboratory.

2.2. Conductivity Test

The development of tests to evaluate the physiological quality of seeds, as well as the standardization of these is essential for the establishment of an efficient quality control [8]. One of the main requirements for the seed vigor refers to obtain reliable results in a relatively short period of time, allowing the speed of decision making especially as regards the operations of collection, processing, and marketing [9]. The literature indicates that rapid tests are most studied early events related to the deterioration of the sequence proposed by Delouche and Baskin [10] as the degradation of cell membranes and reduced activity, and biosynthetic respiratory [9]. The measurement of electrical conductivity through the electrolyte amount released by soaking seeds in water has been applied by the individual method where each seed is a sample or more often, a sample of seed representative of a population (mass method). For this case, the results represent the average conductivity of a group of seeds, may a small amount of dead seeds affect the conductivity of a batch with many high-quality seed generating a read underestimated. To minimize this problem, we recommend choosing the seeds, excluding the damaged seeds.

The electrical conductivity is based on the principle that the deterioration process is the leaching of the cells of seeds soaked in water due to loss of integrity of cellular systems. Thus, low conductivity means a high-quality seed and high conductivity, that is, greater output seed leachate, suggests that less force [11].

The electrical conductivity is not yet widely used in Brazil, its use is restricted to activities related to research (Krzyzanowski et al., 1991). There are common jobs using this test to determine the physiological quality of tree seeds. However, it is a promising vigor test for possible standardization of the methodology, at least within a species. However, it is a promising vigor test for possible standardization of the methodology, at least within a species. However, there are factors which influence the conductivity values as the size, the initial water content, temperature and time of soaking, the number of seeds per sample, and genotype [12].

Five treatments were carried out to test the efficiency of the conductivity test as a means of evaluating the viability of freshly collected K. coriacea Mart. seeds.

Five runs of 20 seeds were tested for each treatment. Seeds were individually placed into containers holding 50 mL of distilled water and left to soak for 30, 90, 120, 180, and 240 minutes in a germination chamber set to a constant temperature of 25°C. The minimum time taken for the soaking of 30 minutes was adopted by the same authors and Amaral and peske [13], Fernandes et al. [14], and Matos [1] who concluded that the period of 30 minutes of soaking is more effective to estimate the germination of the seeds. After each period, the conductivity of the soak solution was immediately tested with a benchtop EC meter precise to +/−1% (Quimis). Readings were expressed as μS·cm−1/g−1 seed [15].

Data thus obtained were subjected to analysis of variance with partitioning into orthogonal polynomials for analysis of the effect of soaking times on electrical conductivity.

2.3. Tetrazolium Test

The tetrazolium test, also known as biochemical test for vitality, is a technique used to estimate the viability and seed germination. A fundamental condition for ensuring the efficiency of the test is the direct contact of the tetrazolium solution with the tissues of the seed to be tested. Due to the impermeability of the coats of most forest tree seeds, it is necessary to adopt a previous preparation of the seeds that were tested. This preparation is based on facilitating entry of the solution in the seed. Among the preparations that precede the test we have cutting the seed coat, seed coat removal, scarification by sandpaper scarification by soaking in hot water and water [16]. In the previous preparation of the seeds, factors such as concentration of the solution or even the time of the staining solution can affect the efficiency of the test in the evaluation of seed quality. The time required for the development of appropriate color according to the Rules for Seed Analysis [16] varies depending on each species, can be between 30 and 240 minutes.

The tetrazolium test has been widely used in seeds of various species due to the speed and efficiency in the characterization of the viability and vigor, and the possibility of damage to the same distinction, assisting in the process of quality control from the steps of harvest storage (GRIS et al, 2007).

The tetrazolium test was also applied to freshly collected K. coriacea Mart. seeds, for a total of three runs and 20 seeds. Seeds were soaked in a 0.5% solution of 2,3,5-triphenyl-2H-tetrazolium for 24 hours in a germination chamber set to a constant temperature of 25°C. After each run, seeds were washed, bisected, and the half-containing the embryonic axis placed under a stereo viewer for examination of staining patterns [17].

2.4. Germination Test

The standard germination test is the official procedure to evaluate the ability of seeds to produce normal seedlings under favorable conditions in the field, but does not always reveal differences in quality and performance among seed lots, which can manifest in storage or in the field [18].

During the germination test optimum conditions are provided and controlled for seeds to encourage the resumption of metabolic activity which will result in the seedlings. The main objective of the germination test is the information about the quality of seeds, which is used in the identification of lots for storage and sowing [19].

Freshly collected K. coriacea Mart. seeds were placed in a germination chamber at a constant temperature of 25°C (Treatment 1) or an alternating temperature of 20–30°C (Treatment 2), on a standard cycle of 8 hours of light and 16 hours of dark. Each test consisted of five runs and was performed on 20 seeds.

Germination was defined as emergence of at least 2.0 mm of the primary root [20]. Assessment was conducted daily, and emergence was observed between day 6 and day 7. At the end of the 14-day test period, the germination percentage was calculated on the basis of radicle emergence [21].

Capture

3. Results

3.1. Conductivity Test

Different soaking times were not associated with any significant differences in conductivity results in K. coriacea Mart. seeds (Table 1).

Table 1: Conductivity ranges of freshly collected Kielmeyera coriacea Mart. seeds after soaking for different periods.
Seeds with a leachate conductivity range of 7–17.99 μS·cm·g were considered nonviable, confirming the hypothesis behind conductivity testing, which is the nonviable seeds that have higher soaking solution conductivity values (Table 2).

Table 2: Percentage of viable Kielmeyera coriacea Mart. seeds according to EC range.
Analysis of variance revealed a low coefficient of variation (20.26%), which suggests good experimental control (Table 3).

Table 3: Analysis of variance of various soaking times for electrical conductivity testing of Kielmeyera coriacea Mart. seeds.
After analysis of variance, the correlation between the soaking time and electrical conductivity variables was assessed. The cubic model yielded

Capture

which is indicative of a positive correlation between the study variables.

The following equation was obtained on the basis of the cubic model:

Capture

 

Analysis of a plot of the above function in the GeoGebra 2007 software package shows that variation in electrical conductivity as a function of soaking time is minor and approaches a constant, which is consistent with the study results, in which changes in soaking time had no influence on conductivity (Figure 1).

378139.fig.001
Figure 1: Leachate conductivity as a function of soaking time in Kielmeyera coriaceaMart. seeds.

Matos [1] reported that a 30-minute soak was enough for assessment of Anadenanthera falcata, Copaifera langsdorffii, and Enterolobium contortisiliquum seeds by the soaking solution pH method—that is, the amount of matter leached after this period sufficed for measurement.

Although the principle of conductivity is the same used for the test pH of exudate, the soaking time needed to analyze the differential seeds through the conductivity may be explained by the fact that this technique is quantitative, while pH in the art exudate analyzes are qualitative. In other words to the technique of pH values of the exudate it is important to detect the acidity of imbibition while on the electrical conductivity we draw a comparison between the analyzed values to separate viable from nonviable samples. To determine a value of electrical conductivity as a reference to determine viable seeds are to be considered the values obtained for fresh seeds and seeds stored.

The thickness of the K. coriacea Mart. seed coat may also have affected the soaking procedure; this species has very thin seed coats, which makes soaking a very fast process.

These results are consistent with those reported by Rodrigues [22], who subjected stored K. coriaceaMart. seeds to the conductivity test and found that 90 minutes is an appropriate soaking time for analysis.

Therefore, it can be inferred that for seed Kielmeyera coriacea Mart. the soaking time of 90 minutes can be applied to obtain satisfactory results.

3.2. Tetrazolium Test

Table 4 shows the results of tetrazolium testing of K. coriacea Mart. seeds in our sample. The mean viability rate was 96.6%. The testing procedure was based on Brazilian Ministry of Agriculture recommendations [17].

tab4
Table 4: Tetrazolium testing of Kielmeyera coriacea Mart. seeds.

The results of the tetrazolium test were quite similar to those obtained with the conductivity method, thus confirming the efficiency of the latter method as a means for assessing the viability of K. coriaceaMart. seeds.

3.3. Germination Test

The germination test results of freshly collected K. coriacea Mart. seeds are shown in Table 5. Regardless of temperature, both test batches exhibited good viability, and no seed dormancy was detected.

tab5
Table 5: Germination test results of Kielmeyera coriacea Mart. seeds.

Radicle emergence was observed between day 7 and day 9 of the test, according to the analysis criteria proposed by Labouriau [21].

These findings are consistent with those of Melo et al., [23] who reported high and relatively rapid germination rates for K. coriacea seeds kept at 25°C on paper towels, with emergence of a perfect radicle on the 7th day of assessment.

4. Conclusions

The electrical conductivity can be used as an indicator of seed viability and presents two advantages: to provide rapid and reliable results and the technique is not destructive and can use the seeds after the conductivity test, so they can be used to produce seedlings.

The present study showed that different soaking times had no effect on the results of conductivity testing of freshly collected K. coriacea Mart. seeds, suggesting that the amount of leached matter was never below the threshold required for adequate testing.

Electrical conductivity testing proved to be a feasible option for viability testing of K. coriacea Mart. seeds, as the results obtained with conductivity testing were confirmed by germination testing and by the tetrazolium test.

References

  1. J. M. M. Matos, Evaluation of pH test on exudate check feasibility of forest seeds, dissertation, University of Brasília, Brasília, Brazil, 2009.
  2. F. Poggiani, S. Bruni, and E. S. Q. Barbos, “Effect of shading on seedling growth of three species forest,” in National conference on native plants, vol. 2, pp. 564–569, Institute of Forestry, 1992.
  3. M. B. Mcdonald Jr. and D. O. Wilson, “ASA-610 ability to detect changes in soybean seed quality,” Journal of Seed Technology, vol. 5, no. 1, pp. 56–66, 1980.
  4. S. Matthews and A. Powell, “A eletrical conductivity test,” in Handbook of Vigor Test Methods, D. A. Perry, Ed., pp. 37–42, International Seed Testing Associaty, Zurich, Switzerland, 1981.
  5. J. Son Mark, W. R. Singh, A. D. C. Novembre, and H. M. C. P. Chamma, “Comparative studies to evaluate dem’etodos physiological quality of soybean seeds, with emphasis the electrical conductivity test,” Brazilian Journal of Agricultural Research, vol. 25, no. 12, pp. 1805–1815, 1990.
  6. S. R. Singh, A. P. Silva, C. B. Munhoz, et al., Guide of Cerrado Plants Used in the Chapada Veadeiros, WWF-Brazil, Brasilia, Brazil, 2001.
  7. J. M. Felfili, C. W. Fagg, J. C. S. Silva, et al., Plants of the APA Gama Cabeça de Veado: Species, ecosystems and recovery, University of Brasilia, Brasília, Department of Engineering Forest, Brasília, Brazil, 2002.
  8. M. F. B. Muniz, et al., “Comparison of methods for evaluating the physiological and health quality of melon seeds,” Journal of Seeds, Pellets, vol. 26, no. 2, pp. 144–149, 2004.
  9. D. C. F. S. Dias and J. Marcos Filho, “Electrical conductivity to assess seed vigor of soybean (Glycine max (L.) Merrill),” Scientia Agricola, vol. 53, no. 1, Article ID article id, pp. 31–42, 1996.View at Publisher · View at Google Scholar
  10. J. C. Delouche and C. C. Baskin, “Acelerated aging techniques for predicting the relative storability of seed lots,” Seed Science and Technology, vol. 1, no. 2, pp. 427–452, 1973.
  11. R. D. Vieira and F. C. Krzyzanowski, “Electrical conductivity test,” in Seed Vigor: Concepts and Tests, F. C. Krzyzanowski, R. D. Vieira, and J. B. França Neto, Eds., pp. 4.1–4.26, Abrates, London, UK, 1999.
  12. R. D. Vieira, “Electrical conductivity test,” in Seed Vigor Tests, R. D. Vieira and N. M. Carvalho, Eds., p. 103, FUNEP, Jaboticabal, Brazil, 1994.
  13. A. S. Amaral and S. T. Peske, “Exudate pH to estimate, in 30 minutes seed viability of soybeans,”Journal of seeds, vol. 6, no. 3, pp. 85–92, 1984.
  14. E. J. Fernandes, R. Sader, and N. M. Carvalho, “seed viability beans (Phaseolus vulgaris L.) estimated by the pH of the exudate,” in Congress Brazil’s Seeds, Gramado, Brazil, 1987.
  15. F. C. Krzyzanowski and R. D. Vieira, “Electrical conductivity test,” in Seed Vigor: Concepts and Tests, F. C. Krzyzanowski, R. D. Vieira, and J. B. France Neto, Eds., pp. 4.1–4.26, Abrates, London, UK, 1999.
  16. Ministry of Agriculture, Livestock and Supply, Rule for seed testing, SNPA/DNPV/CLAV, Brasilia, Brazil, 1992.
  17. Ministry of Agriculture, Livestock and Supply, Rule for seed testing, SNPA/DNPV/CLAV, Brasilia, Brazil, 2009.
  18. N. M. Carvalho and J. Nakagawa, Seeds: Science, Technology and Production, FUNEP, Jaboticabal, Brazil, 2000.
  19. Pina-Rodrigues, et al., “Quality test,” in Germination from Basic to Applied, A. Ferreira and G. F. Borghetti, Eds., pp. 283–297, 2004.
  20. A. G. Ferreira and F. Borghetti, from basic to Germination applied, Artmed, Porto Alegre, Brazil, 2004.
  21. L. G. Labouriau, seed germination, OAS, Washington, DC, USA, 1983.
  22. L. L. Rodrigues, Study of imbibition time for application the method of electrical conductivity in the verification of the feasibility forest seeds stored, monograph, University of Brasília, Brasília, Brazil, 2010.
  23. J. T. Melo, J. F. Ribeiro, and V. L. G. F. Lima, “Germination of Seeds of some tree species native to the Cerrado,” Journal of Seeds, vol. 1, no. 2, pp. 8–12, 1979.

Research article by: Kennya Mara Oliveira Ramos,1 Juliana M. M. Matos,1 Rosana C. C. Martins,1 and Ildeu S. Martins2

1Seed Technology Laboratory of Forestry, Department of Forestry, University of Brasilia, CP 04357, 70919970 Campus Asa Norte, DF, Brazil
2Department of Forestry, University of Brasilia, CP 04357, 70919970 Campus Asa Norte, DF, Brazil

Received 17 December 2011; Accepted 14 February 2012

Academic Editors: A. Berville, C. Gisbert, J. Hatfield, and Y. Ito

Copyright © 2012 Kennya Mara Oliveira Ramos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Categories : Case Studies & Application Stories, Science and Industry Updates

Water Quality Testing in RO Systems – MyronLMeters.com

Posted by 10 May, 2013

Tweet Water quality testing is vital to the design of an efficient, cost-effective RO system, and is one of the best ways to preserve system life and performance. Using an accurate Total Dissolved Solids (TDS) measurement to assess the system load prevents costly mistakes up front. The TDS measurement gives users the information they need […]

DH-UMIII-9PTK-2T

Water quality testing is vital to the design of an efficient, cost-effective RO system, and is one of the best ways to preserve system life and performance.

Using an accurate Total Dissolved Solids (TDS) measurement to assess the system load prevents costly mistakes up front. The TDS measurement gives users the information they need to determine whether or not pretreatment is required and the type of membrane/s to select. Ultrameter™ and ULTRAPEN PT1™ Series TDS instruments feature the unique ability to select from 3 industry standard solution models: 442 Natural Water™ NaCl; and KCl. Choosing the model that most closely matches the characteristics of source water yields measurements accurate enough to check and calibrate TDS monitor/controllers that can help alert to system failures, reducing downtime and increasing productivity. The same instruments provide a fast and accurate test for permeate TDS quality control. Measuring concentrate values and analyzing quality trends lets users accurately determine membrane usage according to the manufacturer’s specifications so they can budget consumption correctly. These daily measurements are invaluable in detecting problems with system performance where changes in the ionic concentration of post-filtration streams can indicate scaling or fouling. System maintenance is generally indicated if there is either a 10-15% drop in performance or permeate quality as measured by TDS.

Thin-film composite membranes degrade when exposed to chlorine. In systems where chlorine is used for microbiological control, the chlorine is usually removed by carbon adsorption or sodium bisulfite addition before membrane filtration. The presence of any chlorine in such systems will at best reduce the life of the membrane, thus, a target of 0 ppm free chlorine in the feedwater is desirable.

ORP gives the operator the total picture of all chemicals in solution that have oxidizing or reducing potential including chlorine, bromine, chloramines, chlorine dioxide, peracetic acid, iodine, ozone, etc. However, ORP can be used to monitor and control free chlorine in systems where chlorine is the only sanitizer used. ORP over +300 mV is generally considered undesirable for membranes. Check manufacturer’s specifications for tolerable ORP levels.

An inline ORP monitor/controller placed ahead of the RO unit to automatically monitor for trends and breakthroughs coupled with spot checks by a portable instrument will prevent equipment damage and failure. Myron L 720 Series II™ ORP monitor/controllers can be configured with bleed and feed switches as well as visible and audible alarms.

Ultrameter and ULTRAPEN portable handhelds are designed for fast field testing and are accurate enough to calibrate monitor/controllers. Our measurement methods are objective and have superior accuracy and convenience when compared to colorimetric methods where determination of equivalence points is subjective and can be skewed by colored or turbid solutions.

Monitoring pH of the source water will allow users to make adjustments that optimize the performance of antiscalants, corrosion inhibitors and anti-foulants. Using a 720 II Series Monitor/controller to maintain pH along with an Ultrameter Series or ULTRAPEN PT2™ handheld to spot check pH values will reduce consumption of costly chemicals and ensure their efficacy.

Most antiscalants used in chemical system maintenance specify a Langelier Saturation Index maximum value. Some chemical manufacturers and control systems develop their own proprietary methods for determining a saturation index based on solubility constants in a defined system. However, LSI is still used as the predominant scaling indicator because calcium carbonate is present in most water. Using a portable Ultrameter III 9PTKA™ provides a simple method for determining LSI to ensure the chemical matches the application.

The Ultrameter III 9PTKA computes LSI from independent titrations of alkalinity and hardness along with electrometric measurements of pH and temperature. Using the 9PTKA LSI calculator, alterations to the water chemistry can be determined to achieve the desired LSI. Usually, pH is the most practical adjustment. If above 7, acid additions are made to achieve the pH value in the target LSI. Injections are made well ahead of the RO unit to ensure proper mixing and avoid pH hotspots. A Myron L 720 Series II pH Monitor/controller will automatically detect and divert solution with pH outside the range of tolerance for the RO unit. ULTRAPEN PT2, TechPro II and Ultrameter Series instruments can be used to spot check and calibrate the monitor/controller as part of routine maintenance and to ensure uniform mixing.

Water hardness values indicate whether or not ion exchange beds are required in pretreatment. Checking hardness values directly after the softening process with the Ultrameter III 9PTKA ensures proper functioning and anticipates the regeneration schedule.

Alkalinity is not only important in its effect on the scaling tendency of solution, but on pH maintenance. Additions of lime are used to buffer pH during acid injection. Use a 9PTKA to measure alkalinity values for fast field analysis where other instrumentation is too cumbersome to be practical.

Though testing and monitoring pressure is a good way to evaluate system requirements and performance over time, measuring other water quality parameters can help pinpoint problems when troubleshooting. For example, if the pressure differential increases over the second stage, the most likely cause is scaling by insoluble salts. This means that any degradation in performance is likely due to the dissolved solids in the feed. Using a 9PTKA to evaluate LSI and calculate parameter adjustments is a simple way to troubleshoot a costly problem.

Myron L Meters saves you 10% on all Ultrameters and Ultrapens when you order online at MyronLMeters.com, where you can find the complete selection of Myron L meters, including the Ultrameter III 9PTKA.

Original story from International Filtration News V 32, no. 2

 

Categories : Application Advice, Case Studies & Application Stories, Technical Tips

Pool Draining Tips to Protect Water Quality – MyronLMeters.com

Posted by 1 May, 2013

TweetMyronLMeters.com has the most advanced lineup of pool analysis meters for the professional pool maintenance technician from the Ultrapen to the PoolPro PS9. Pool Draining Tips to Protect Water Quality With summer right around the corner, many swimming pool owners will be readying their swimming pools in anticipation of the season’s heat. As part of […]

MyronLMeters.com has the most advanced lineup of pool analysis meters for the professional pool maintenance technician from the Ultrapen to the PoolPro PS9.

Pool Draining Tips to Protect Water Quality

With summer right around the corner, many swimming pool owners will be readying their swimming pools in anticipation of the season’s heat. As part of this process, some pool owners like to drain old swimming pool water which has been sitting all winter. Though not a necessary task, the following tips are provided for you to properly drain pool water in order to protect the water resources in your community.

Whenever possible, it is best to drain your pool onto your landscape. This recycles your pool water, conserves irrigation water, and avoids the environmental risks associated with draining your pool to the street. Before draining your pool water to the street or to your landscape, be sure to follow the guidelines outlined below.

While draining pool water to the street is a common practice, it can prove harmful to the environment if the pool owner does not properly plan and prepare prior to draining. When pool water is drained to the street, it can carry other pollutants such as oil, grease, sediment, bacteria and trash down the storm drain and into the nearest creek, river, or the ocean. Swimming pool water also often contains harmful additives and chemicals. If the water is not properly treated to remove these pollutants prior to draining, they can cause further damage to the health of our waterways and to the plants and animals that live there.

Also, prior to draining to the street, residents are asked to sweep the curb and gutter between the discharge point from their yard to the storm drain down hill from their home. This will remove any pollutants from the gutter that may be carried up by the drained pool water to the storm drain.

For chlorine pools, chlorine levels must be lowered to less than 1 part per million prior to draining. This can be done naturally, by simply allowing the pool water to sit in the sun for a minimum of three days. Alternatively, de-chlorination kits can be purchased at home supply stores at a very reasonable cost. These kits have the tools you need to reach the appropriate chlorine levels before draining your pool to the curb and gutter.

Some people have salt water pool systems which may be preferred due to the lower amount of chemicals required for their operation. However, these pools must not be drained to the storm drain system due to their high salt content relative to the fresh water systems they drain into. Total dissolved solids (TDS) must be below 500 parts per million in order to drain into the street.

Green pools,” which are pools in which algae is growing, also must not be drained to the street. In these instances, algae must first be killed and removed. This is usually done by chlorinating the swimming pool until the algae is gone, then lowering chlorine to the allowable discharge level. Cartridge filters or diatomaceous earth (DE) filters should be rinsed onto a pervious surface such as landscaped areas or grass. While DE is actually beneficial in your garden, it can build up in storm drains and clog them. DE residues can be scooped up and simply thrown in the trash or put to use fending off worms in your garden.

For more information on how to reach acceptable chemical and TDS levels, call your pool maintenance specialist.

If you are a pool maintenance specialist, consider the PoolPro PS9TKA from MyronLMeters.com – the most advanced and comprehensive pool water analysis meter on the market.

PS9TK from MyronLMeters.com

 

 

 

 

 

 

 

 

 

Pool Pro PS9TK

Measures 9 Parameters: Conductivity, Mineral/Salts, TDS, Alkalinity, Hardness, LSI, pH, ORP/Free Chlorine, Temperature
LSI Calculator for hypothetical water balance calculations
Wireless data transfer capability with bluDock option
Auto-ranging delivers increased resolution across diverse applications
Adjustable Temperature Compensation and Cond/TDS conversion ratios for user-defined solutions
Nonvolatile memory of up to 100 readings for stored data protection
Date & time stamp makes record-keeping easy
pH calibration prompts alert you when maintenance is required
Auto-off minimizes energy consumption
Low battery indicator
(Includes instrument with case and solutions)

Categories : Case Studies & Application Stories