Using MyronLMeters.com

Posted by 28 May, 2014

Tweet  Use MyronLMeters.com Wisely We have a lot to offer (if you know where to look) MyronLMeters.com can tell you most of what you need to know…if you know where to look,  Want to know how to calibrate? Take a look in our videos OR manuals section. Want to send a meter in for repair? […]

 

Use MyronLMeters.com Wisely

We have a lot to offer (if you know where to look)

MyronLMeters.com can tell you most of what you need to know…if you know where to look,  Want to know how to calibrate? Take a look in our videos OR manuals section. Want to send a meter in for repair? Click on the REPAIRS tab and you’ll find out how. Have a discontinued product?  We can tell you the new part number. Don’t know what solutions to use – there are several places you can find them.

Keep this email handy for reference and it will save you a phone call. Also, if you have suggestions to improve our website, please let us know! We want to make MyronLMeters,com as easy to use as the meters we sell.

 

Click this image on the home page OR click the OPERATIONS MANUALS page and you’ll find not only operations manuals, but material safety data sheets for solutions, product datasheets, and application bulletins.

 

Click this image on the home page OR click the REPAIRS tab and you’ll find out how to send your meter in for repair or calibration AND some of the most popular repair videos.

 

Click this image on the Myron L Meters home page OR click the VIDEOS tab OR visit our YOUTUBE channel and view the latest product overview and maintenance videos.

 

Click this image on our home page OR click TECHNICAL SUPPORT at the top of the home page and you’ll find Frequently Asked Questions, a handy contact form, links to MANUALS, REPAIRS, VIDEOS, terms, discontinued products, conversion charts and industry applications.

 

Want to know how to CALIBRATE? Check the OPERATIONS MANUALS page for your meter and open or download OR check out our VIDEOS OR search our BLOG for calibration. Check your OPERATIONS MANUAL for the proper solution.

 

Need help finding a product? Browse our sections on the HOME PAGE OR click PRODUCTS to search by category or parameter OR use the SEARCH box in the upper right of the page.

 

 

Categories : Company News, MyronLMeters.com Service

Real-Time Field Water Analysis with an Ultrameter III 9P: Myron L Meters

Posted by 30 Apr, 2014

Tweet The Ultrameter III 9P Titration Kit allows for fast, accurate alkalinity, hardness & LSI titrations in the field. The Ultrameter III 9P is based on the tried and tested design of the Ultrameter II 6P and measures conductivity, resistivity, TDS, pH, ORP, free chlorine and temperature quickly and accurately. The 9P also features new […]

tumblr_mrw572B3Q81qgr3lpo4_250

The Ultrameter III 9P Titration Kit allows for fast, accurate alkalinity, hardness & LSI titrations in the field.

The Ultrameter III 9P is based on the tried and tested design of the Ultrameter II 6P and measures conductivity, resistivity, TDS, pH, ORP, free chlorine and temperature quickly and accurately. The 9P also features new parameters that allow the user to perform titrations in the field. The Ultrameter III 9P has a unique method of performing alkalinity, hardness and LSI titrations that makes field monitoring fast and feasible.

How does it work?

The 9P titrations are based on conductometric titration methods that are possible with the 9P’s advanced conductivity cell and microprocessor based design. Titrations are chemically equivalent to standard methods using colorimetric techniques, but replace color change identification of equivalence points with changes in conductivity, thereby replacing a subjective, qualitative assessment with a quantitative one. This means the instrument determines the equivalence point instead of the user and the method of analyzing the equivalence point is objective, rather than subjective.

What is a conductometric titration?

A conductometric titration is performed just like a colorimetric titration, only the equivalence point is determined by a change in conductivity rather than a change in color. This is based on the fact that changes in ionic concentration that occur as constituents react with reagents change the electrical conductivity of the solution.

A simple example can be given of the titration of a strong acid with a strong base. The acid solution, before the addition of the base, has a very high conductance owing to the concentration and mobility of the small hydrogen ions.

With the addition of the base, the hydroxide reacts with the hydrogen to form water, thus reducing the hydrogen ion concentration and effectively lowering the conductivity of the solution. The conductivity continues to decrease until all the hydrogen ions are consumed in the reaction, but then sharply increases with the next addition of base, which contains highly conductive hydroxide ions. The solution conductivity then continues to increase with each base addition. The equivalence point in this example would be a clearly defined minimum point of lowest conductivity (see Figure 2).

Not all solutions will give a plot with an equivalence point that is as easy to distinguish as the sharp upturn found in a strong acid-base titration, however. The 9P plots several reagent additions beyond any changes in conductivity and matches the derived curve to the behavior of solutions of known concentration.

Is a conductometric titration a standard method?

(Standard method comparison to methods listed in the Standard Methods for the Examination of Water and Wastewater published by the American Public Health Assn., the American WaterWorks Assn. and the Water Environment Assn.)

Myron L’s conductometric titration methods are chemically equivalent to standard methods that use the same procedure, but with pH indicators. That means that they use the same reagents in the same sequence with the same theoretical approach. The difference lies in the 9P’s ability to determine the equivalence point based on numerical data, rather than subjective observation of a color change.

The alkalinity titration is modeled after standard method 2320. The sample is titrated with sulfuric acid and conductivity changes are recorded at each titration point.

The hardness titration is modeled after standard method 2340. To reduce the affects of high alkalinity in the form of bicarbonate, acid is first added to the sample. This shifts the bicarbonate toward carbonic acid, then carbon dioxide (reference the carbonic acid equilibrium), which is gassed off the sample. The sample is buffered above pH 10 (effectively pH 12) by the addition of sodium hydroxide. EDTA reagent is then added incrementally, with conductivity measured after each addition.

The LSI titration uses a simplified version of the thermodynamic equations for the determination of the scaling tendency of water developed in 1936 by Dr. Wilfred Langelier. The user simply titrates for alkalinity and hardness, then measures pH and temperature, and the 9P generates the saturation index value automatically.

Conductometric vs. Colorimetric

The benefits of determining the equivalence points by conductometric titrations are that the user does not have to interpret any results. The 9P does it for you using objective measurements. And the 9P is a faster method. For example, a typical colorimetric titration for hardness can take up to 30 drops of reagent, while the 9P method for the same concentration only requires six to eight drops. Colorimetric distinctions are sometimes hard to make, as well, especially when adding reagents drop by drop while trying to carefully observe the precise point at which the color changes—and that can lead to inaccurate data. This is especially true in colored or turbid solutions.

The conductometric method can also be used with very dilute solutions or for solutions for which there is no suitable indicator. The conductometric titration method gives you empirical results that are calculated for you, eliminating potential sources of error. And the measurements can be stored in memory for later data transfer using the optional U2CI software and bluDock Bluetooth hardware installed on the 9P . This makes data analysis and reporting seamless.

What else can the Ultrameter III 9P do?

Alkalinity, hardness, pH and temperature values used to compute the saturation index of a sample can be manipulated in the LSI Calculator function, allowing you to perform on the spot analysis of water balance scenarios. You can use historical or theoretical data to populate the required values in the calculator.

And the 9P titration kit comes with all required accessories, reagents, and calibration solutions (see Figure 6). Streamline your field testing with an Ultrameter III 9P from MyronLMeters, where you can save 10% when you order online.

Myron L Meters is the premier online retailer of accurate, reliable, and easy-to-use Myron L meters like the Ultrameter III 9P.  Save 10% when you order online at MyronLMeters.com. Find out more about the Ultrameter III 9P in our Myron L Meters – Ultrameter III 9P Titration Kit Overview video.

 

Categories : Case Studies & Application Stories, Product Updates

Water Industry News: MyronLMeters.com

Posted by 19 Apr, 2014

Tweet   Water Industry News from MyronLMeters.com Published by Myron L Meters 18 April 2014 Read paper → Environment Health Science World Stories   California’s Governor Wants Water Tunnels. Antitax Group Wants to Know Who Pays – Businessweek Shared by Myron L Meters www­.businessweek.com – California has a $25 billion plan to transport snowmelt from […]





 



Water Industry News
from MyronLMeters.com


Published by
Myron L Meters
18 April 2014


Read paper →


Environment


Health


Science


World


Stories

 


California’s Governor Wants Water Tunnels. Antitax Group Wants to Know Who Pays – Businessweek


avatar
Shared by
Myron L Meters


thumbnail

www­.businessweek.com

- California has a $25 billion plan to transport snowmelt from the northern Sierras through a pair of 37-mile tunnels to farms and cities in the south. But there’s no indication of how much water use…


On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution – Online First – Springer


avatar
Shared by
Imen Ayed


link­.springer.com

- Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberliteâ„¢ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents co…


China seeks solution to providing clean drinking water supplies


avatar
Shared by
news.google.com


thumbnail

www­.scmp.com

- Large colonies of micro-organisms – some capable of causing serious disease – have been discovered inside pipelines carrying drinking water to homes in most major mainland cities, the South China M…


City moves to secure $27.5M for wastewater treatment plant


avatar
Shared by
news.google.com


thumbnail

thetandd­.com

- Orangeburg City Council gave first reading Tuesday night to a series of ordinances that will help finance the Department of Public Utilities’ $27.5 million wastewater treatment plant overhauls and …


Reaping the benefits of a composting toilet


avatar
Shared by
Water.org


thumbnail

water­.org

- Composting toilets are a win in rural India. Improved sanitation means better health for the owners and their neighbors. After the pit has been used for about a year and is getting full, they seal …


The Power of Water


avatar
Shared by
Water.org


thumbnail

water­.org

- The water and sanitation problem in the world is far too big for charity alone. At Water.org, we are driving the water sector for new solutions, new financing models, greater transparency, and real…


Portland, Ore., is dumping 38 million gallons of drinking water because of a urinating teenager


avatar
Shared by
Myron L Meters


thumbnail

www­.washingtonpost.com

- Portland, Ore., is dumping 38 million gallons of drinking water because of a urinating teenager By Mark Berman April 17 at 2:49 pm More Comments It took one teenager urinating in a reservoir for th…


Desalination Plant Said to Be Planned for Thirsty Beijing – NYTimes.com


avatar
Shared by
Myron L Meters


thumbnail

www­.nytimes.com

- BEIJING — A coastal desalination plant planned for east of Beijing could provide a large portion of the drinking water for the parched Chinese capital by 2019, the state news media quoted officials…


How to Build a Rain Garden and Curb Water Pollution (VIDEO)


avatar
Shared by
Myron L Meters


thumbnail

www­.onegreenplanet.org

- Have you ever heard of a rain garden? Building a rain garden, which helps reserve stormwater and keep it out of neighboring rivers, lakes, and ponds you want to help keep clean, can help curb water…


Chinese court dismisses water pollution lawsuit


avatar
Shared by
Myron L Meters


www­.reuters.com

- BEIJING (Reuters) – A Chinese court has rejected a lawsuit filed by five residents from a major northwestern city after authorities said a cancer-inducing chemical had been found in tapwater at 20 …


Government Agency Takes On Non-Revenue Water


avatar
Shared by
Myron L Meters


www­.wateronline.com

- Trenton Water Works is struggling with the problem of non-revenue water.  A new report “tracks the amount of water lost before it gets to the tap in Mercer County — and leading the pack with the mo…


The Stream, April 16: Scientist Says Deforestation, Not Dams, Caused Massive Flood in the Amazon


avatar
Shared by
Myron L Meters


www­.circleofblue.org

- Extreme Weather Extreme flooding along the Madeira River in the Amazon basin, which killed 60 people and displaced 68,000 families this year, was the result of massive deforestation in Bolivia and …




Environment


U of C Nurses for Clean Water


avatar
Shared by
Water.org


Local Vendors Make a Fast Buck Using Water Scarcity – The New Indian Express


avatar
Shared by
Water.org


How a facebook group from Pune brought aid to drought affected Maharashtra


avatar
Shared by
Water.org


Governor’s Coal Ash Action Plan Favors Duke Energy, Threatens Drinking Water


avatar
Shared by
Waterkeeper Alliance


Waterkeeper.Org » McCrory’s Coal Ash Plan a Failure


avatar
Shared by
Waterkeeper Alliance


Restoring Louisiana’s Coast Will Require Restoring Its Democracy—Governor Jindal Is Trying to Undermine Both


avatar
Shared by
Waterkeeper Alliance



More Environment →



Health


Waterkeeper.Org » Splash Series Events


avatar
Shared by
Waterkeeper Alliance


Natural Cleansers – NRDC


avatar
Shared by
NRDC


NRDC: Chemical Index


avatar
Shared by
NRDC


If you think FDA knows what chemicals are in our food, think again. | Maricel V. Maffini, PhD’s Blog


avatar
Shared by
NRDC


Water Quality > Town of Devon


avatar
Shared by
Canuck | MacLeod


NYCWasteLess – Spring 2014 SAFE Disposal Events


avatar
Shared by
NYC Water



More Health →




Photos


thumbnail


avatar
Shared by
Myron L Meters


More photos →



Science


Ocean Acidification Could Make Fish Lose Their Fear Of Predators, Study Finds


avatar
Shared by
NRDC


BBC News – Guernsey beach fails water quality standard


avatar
Shared by
TweetingCrapaud


LI Sound water quality improvement on target


avatar
Shared by
Long Island News



More Science →



World


News across the East Coast


avatar
Shared by
The Beach


Water district proposes taking over leaky, empty Ten Mile Creek project » TCPalm.com


avatar
Shared by
Treasure Coast News



More World →

 


Environment • Health • Science • World • Stories
Read paper →
 

This email was sent to


Water Industry News was originally published on Myron L Meters Blog

Categories : Company News, Water Industry News

Measuring Key Water Quality Parameters: MyronLMeters.com

Posted by 12 Apr, 2014

TweetThe right meter is essential for measuring any of several key water quality parameters:Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed […]

The right meter is essential for measuring any of several key water quality parameters:

Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed in microsiemens per centimeter (µS/cm) at 25º Celsius. Myron L Meters carries a complete line of conductivity meters, including the Ultrameter II 4P.

Resistivity is the inverse of conductivity. Electrical conductivity is a measure of water’s resistance to an electric current. Water itself has a weak electrical conductivity. Electric current is transported in water by dissolved ions, making conductivity measurement a quick and reliable way to monitor the total amount of ionic contaminants in water. Myron L Meters carries a complete line of resistivity meters, including inline monitor/controllers like the 753II Resistivity Digital Monitor/Controller.

Total Dissolved Solids (TDS) is also a measurement of the amount of dissolved minerals in the water. In this instance they would be called solids in solution. The quantity of dissolved solids in the solution is directly proportional to the conductivity. In this case, conductivity is the measurement but it is used to estimate TDS. It is measured with a conductivity meter but is reported as TDS in parts per million (ppm), via a complex algorithm. Myron L Meters carries a complete line of TDS meters, including the Ultrapen PT1.

pH is a measure of the concentration of hydrogen ions in the water, indicating the acidity or alkalinity of the water. On the pH scale of 0-14, a reading of 7 is considered to be neutral. Readings below 7 indicate acidic conditions, while readings above 7 indicate the water is alkaline or basic. Naturally occurring fresh waters have a pH range between 6 and 8. Myron L Meters carries a complete line of pH meters, including the Ultrapen PT2

Temperature is expressed in degrees Celsius (C) or Fahrenheit (F). Most digital handheld Myron L Meters include a temperature function.



Oxidation reduction potential (ORP)can correlate millivolt readings to the sanitization strength of the water. Microbes can cause corrosion, fouling, and disease, and oxidizing biocides are usually used to keep microbial levels under control. ORP is expressed in millivolts (mV). Myron L Meters carries a complete line of ORP meters, including the Ultrapen PT3

Free Chlorine refers to both hypochlorous acid (HOCl) and the hypochlorite (OCl–) ion or bleach, and is commonly added to water systems for disinfection. Free chlorine is typically measured in drinking water disinfection systems to find whether the water system contains enough disinfectant.  Myron L Meters Ultrameter II 6PFCe and Ultrapen PT4 can both be used to measure free chlorine.

Salinity is simply a measure of the amount of salts dissolved in water, a measurement useful to pool service technicians and others.  You can measure salinity with a Myron L Pool Pro PS6.

Alkalinity is a measure of the capacity of water or any solution to neutralize or “buffer” acids. This measure of acid-neutralizing capacity is important in figuring out how “buffered” the water is against sudden changes in pH. Alkalinity is a titration function of the Ultrameter III 9PTKA.

Hardness is caused by compounds of calcium and magnesium, and by a variety of other metals.  As water moves through soil and rock, it dissolves very small amounts of minerals and holds them in solution. Calcium and magnesium dissolved in water are the two most common minerals that make water “hard.” Hardness is a titration function of the Ultrameter III 9PTKA.

LSI or Langelier Saturation Index helps you determine the scaling potential of water. LSI is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. LSI is a titration function of the Ultrameter III 9PTKA.

MyronLMeters.com is the premier internet retailer of accurate, reliable Myron L meters.  Save 10% when you order Myron L meters online at MyronLMeters.com. You’ll find reliable instruments for every water quality parameter mentioned above.



 

 

 

Categories : Uncategorized

DEIONIZED WATER APPLICATIONS: MyronLMeters.com

Posted by 11 Apr, 2014

TweetYears ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.THE DEIONIZATION PROCESSThe vast majority of dissolved impurities in […]

Years ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.

THE DEIONIZATION PROCESSThe vast majority of dissolved impurities in modern water supplies are ions such as calcium, sodium, chlorides, etc. The deionization process removes ions from water via ion exchange. Positively charged ions (cations) and negatively charged ions (anions) are exchanged for hydrogen (H+) and hydroxyl (OH-) ions, respectively, due to the resin’s greater affinity for other ions. The ion exchange process occurs on the binding sites of the resin beads. Once depleted of exchange capacity, the resin bed is regenerated with concentrated acid and caustic which strips away accumulated ions through physical displacement, leaving hydrogen or hydroxyl ions in their place.

DEIONIZER TYPESDeionizers exist in four basic forms: disposable cartridges, portable exchange tanks, automatic units, and continuous units. A two-bed system employs separate cation and anion resin beds. Mixed-bed deionizers utilize both resins in the same vessel. The highest quality water is produced by mixed-bed deionizers, while two-bed deionizers have a larger capacity. Continuous deionizers, mainly used in labs for polishing, do not require regeneration.

TESTING Dl WATER QUALITYWater quality from deionizers varies with the type of resins used, feed water quality, flow, efficiency of regeneration, remaining capacity, etc. Because of these variables, it is critical in many Dl water applications to know the precise quality. Resistivity/ conductivity is the most convenient method for testing Dl water quality. Deionized pure water is a poor electrical conductor, having a resistivity of 18.2 million ohm-cm (18.2 megohm) and conductivity of 0.055 microsiemens. It is the amount of ionized substances (or salts) dissolved in the water which determines water’s ability to conduct electricity. Therefore, resistivity and its inverse, conductivity, are good general purpose quality parameters.

Because temperature dramatically affects the conductivity of water, conductivity measurements are internationally referenced to 25°C to allow for comparisons of different samples. With typical water supplies, temperature changes the conductivity an average of 2%/°C, which is relatively easy to compensate. Deionized water, however, is much more challenging to accurately measure since temperature effects can approach 10%/°C! Accurate automatic temperature compensation, therefore, is the “heart’ of any respectable instrument.

RECOMMENDED MYRON L METERSPortable instruments are typically used to measure Dl water quality at points of use, pinpoint problems in a Dl system confirm monitor readings, and test the feed water to the system. The handheld Myron L meters have been the first choice of Dl water professionals for many years. For two-bed Dl systems, there are several usable models with displays in either microsiemens or ppm (parts per million) of total dissolved solids. The most versatile instruments for Dl water is the 4P or 6PFCE Ultrameter II™, which can measure both ultrapure mixedbed quality water and unpurified water. It should be noted that once Dl water leaves the piping, its resistivity will drop because the water absorbs dissolved carbon dioxide from the air. Measuring of ultrapure water with a hand-held instrument requires not only the right instrument, but the right technique to obtain accurate, repeatable readings. Myron L meters offer the accuracy and precision necessary for ultrapure water measurements.

Inline Monitor/controllers are generally used in the more demanding Dl water applications. Increased accuracy is realized since the degrading effect of carbon dioxide on high purity water is avoided by use of an in-line sensor (cell). This same degradation of ultrapure water is the reason there are no resistivity calibration standard solutions (as with conductivity instruments). Electronic sensor substitutes are normally used to calibrate resistivity Monitor/controllers.

Myron L Meters carries a variety of inline instruments, including resistivity Monitor/controllers designed specifically for Dl water. Seven resistivity ranges are available to suit any Dl water application: 0-20 megohm, 0-10 megohm, 0-5 megohm, 0-2 megohm, 0-1 megohm, 0-500 kilohm, and 0-200 kilohm. Temperature compensation is automatic and achieved via a dual thermistor circuit. Monitor/controller models contain an internal adjustable set point, piezo alarm connectors and a heavy-duty 10 amp relay circuit which can be used to control an alarm, valves, pump, etc. Available options include 4-20 milliamp output, 3 sensor input, 3 range capability and temperature. Internal electronic sensor substitutes are standard on all Monitor/controllers.

Sensors are available constructed in either 316 stainless steel or titanium. All sensors are provided with a 3/4” MNPT polypropylene bushing and 10 ft./3 meters of cable. Optional PVDF or stainless steel bushings can be ordered, as well as longer cable lengths up to 100 ft./30 meters.

The following table briefly covers recommended Myron L meters for Dl water applications.

DEIONIZED WATER APP TABLE

Capture

 

MyronLMeters.com is the premier internet retailer for all recommended Myron L meters above. Save 10% when you order online at MyronLMeters.com.

Categories : Uncategorized

DEIONIZED WATER APPLICATIONS: MyronLMeters.com

Posted by 11 Apr, 2014

TweetYears ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash. THE DEIONIZATION PROCESS The vast majority of dissolved […]

Years ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.

THE DEIONIZATION PROCESS
The vast majority of dissolved impurities in modern water supplies are ions such as calcium, sodium, chlorides, etc. The deionization process removes ions from water via ion exchange. Positively charged ions (cations) and negatively charged ions (anions) are exchanged for hydrogen (H+) and hydroxyl (OH-) ions, respectively, due to the resin’s greater affinity for other ions. The ion exchange process occurs on the binding sites of the resin beads. Once depleted of exchange capacity, the resin bed is regenerated with concentrated acid and caustic which strips away accumulated ions through physical displacement, leaving hydrogen or hydroxyl ions in their place.

DEIONIZER TYPES
Deionizers exist in four basic forms: disposable cartridges, portable exchange tanks, automatic units, and continuous units. A two-bed system employs separate cation and anion resin beds. Mixed-bed deionizers utilize both resins in the same vessel. The highest quality water is produced by mixed-bed deionizers, while two-bed deionizers have a larger capacity. Continuous deionizers, mainly used in labs for polishing, do not require regeneration.

TESTING Dl WATER QUALITY
Water quality from deionizers varies with the type of resins used, feed water quality, flow, efficiency of regeneration, remaining capacity, etc. Because of these variables, it is critical in many Dl water applications to know the precise quality. Resistivity/ conductivity is the most convenient method for testing Dl water quality. Deionized pure water is a poor electrical conductor, having a resistivity of 18.2 million ohm-cm (18.2 megohm) and conductivity of 0.055 microsiemens. It is the amount of ionized substances (or salts) dissolved in the water which determines water’s ability to conduct electricity. Therefore, resistivity and its inverse, conductivity, are good general purpose quality parameters.

Because temperature dramatically affects the conductivity of water, conductivity measurements are internationally referenced to 25°C to allow for comparisons of different samples. With typical water supplies, temperature changes the conductivity an average of 2%/°C, which is relatively easy to compensate. Deionized water, however, is much more challenging to accurately measure since temperature effects can approach 10%/°C! Accurate automatic temperature compensation, therefore, is the “heart’ of any respectable instrument.

RECOMMENDED MYRON L METERS
Portable instruments are typically used to measure Dl water quality at points of use, pinpoint problems in a Dl system confirm monitor readings, and test the feed water to the system. The handheld Myron L meters have been the first choice of Dl water professionals for many years. For two-bed Dl systems, there are several usable models with displays in either microsiemens or ppm (parts per million) of total dissolved solids. The most versatile instruments for Dl water is the 4P or 6PFCE Ultrameter II™, which can measure both ultrapure mixedbed quality water and unpurified water. It should be noted that once Dl water leaves the piping, its resistivity will drop because the water absorbs dissolved carbon dioxide from the air. Measuring of ultrapure water with a hand-held instrument requires not only the right instrument, but the right technique to obtain accurate, repeatable readings. Myron L meters offer the accuracy and precision necessary for ultrapure water measurements.

Inline Monitor/controllers are generally used in the more demanding Dl water applications. Increased accuracy is realized since the degrading effect of carbon dioxide on high purity water is avoided by use of an in-line sensor (cell). This same degradation of ultrapure water is the reason there are no resistivity calibration standard solutions (as with conductivity instruments). Electronic sensor substitutes are normally used to calibrate resistivity Monitor/controllers.

Myron L Meters carries a variety of inline instruments, including resistivity Monitor/controllers designed specifically for Dl water. Seven resistivity ranges are available to suit any Dl water application: 0-20 megohm, 0-10 megohm, 0-5 megohm, 0-2 megohm, 0-1 megohm, 0-500 kilohm, and 0-200 kilohm. Temperature compensation is automatic and achieved via a dual thermistor circuit. Monitor/controller models contain an internal adjustable set point, piezo alarm connectors and a heavy-duty 10 amp relay circuit which can be used to control an alarm, valves, pump, etc. Available options include 4-20 milliamp output, 3 sensor input, 3 range capability and temperature. Internal electronic sensor substitutes are standard on all Monitor/controllers.

Sensors are available constructed in either 316 stainless steel or titanium. All sensors are provided with a 3/4″ MNPT polypropylene bushing and 10 ft./3 meters of cable. Optional PVDF or stainless steel bushings can be ordered, as well as longer cable lengths up to 100 ft./30 meters.

The following table briefly covers recommended Myron L meters for Dl water applications.

DEIONIZED WATER APP TABLE

Capture

 

MyronLMeters.com is the premier internet retailer for all recommended Myron L meters above. Save 10% when you order online at MyronLMeters.com.

Categories : Application Advice, Case Studies & Application Stories, Product Updates, Science and Industry Updates, Technical Tips

New Ultrapen Resources: MyronLMeters.com

Posted by 8 Apr, 2014

Tweet  New Ultrapen Resources New Ultrapen Resources YouTube, Myron L Meters Blog, and Product Pages At Myron L Meters, we’ve been busy lately updating our YouTube Channel to bring you the latest product overviews, calibration, care and maintenance, and product features videos. We’ve been keeping them short and focused because we know you’re busy. We’re […]

 

New Ultrapen Resources


New Ultrapen Resources

YouTube, Myron L Meters Blog, and Product Pages

At Myron L Meters, we’ve been busy lately updating our YouTube Channel to bring you the latest product overviews, calibration, care and maintenance, and product features videos. We’ve been keeping them short and focused because we know you’re busy. We’re creating similar blog posts so you will always have your choice of video instruction overview and handy print reference. Have suggestions for videos?  Would you like a branded video for your company? Let us know at MyronLMeters@gmail.com.

Myron L Meters presents a review of the Ultrapen PT2 that measures pH. In this video, we cover the steps for measuring pH, changing the temperature setting, changing the pH measurement mode, and overall features.

Click to find out how!
“The Ultrapen PT2 is compact, reliable, easy to use and so far seems very durable while riding in its carry case between measurements. I use it daily and it reliably delivers PH and temperature.”
Calibration of the Ultrapen PT3 ORP Pen
The factory recommends calibrating twice a month, depending on usage. However, you should check the calibration whenever measurements are not as expected.
NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are using a proper ORP calibration solution. If the solution is correct, clean the sensor as described im the manual under Routine Maintenance. (Reconditioning the sensor should not be necessary due to the high ionic strength of the calibration solutions.) Restart calibration.
NOTE: Small bubbles trapped in the sensor may give a false calibration. After calibration is completed, measure the ORP calibration solution again to verify correct calibration. Remember, in measurement mode you must manually correct for temperature variance from 25ºC. Example: At 25ºC, ORP2602OZ calibration solution will read 260mV; however, at 20.0ºC ORP2602OZ will read 265mV.
NOTE: If at any point during calibration, you do not submerge the sensor in solution
before the flashing slows, allow the PT3 to turn off and start over.
READ MORE
Our Ultrapen PT1 product overview video has been embedded on a Russian water products company website.


Want to stay up-to-date with Myron L Meters products?  Check out our blog and subscribe to our YouTube Channel.  You’ll get the latest maintenance tips, product updates, and more…
Cool Customers
At Myron L Meters, we think all of our customers are cool, but when this guy ordered an Ultrameter II 6P we thought it was VERY cool. Thank you, Jason Statham. It just goes to show you that – even if you’re expendable – you want your meter to last.
You’ll find our complete selection of Ultrapens HERE.
Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
Pinterest
Pinterest
YouTube
YouTube
Google Plus
Google Plus
Tumblr
Tumblr

Copyright© , All rights reserved. 

 

Categories : Care and Maintenance, Product Updates, Technical Tips, Videos

New Ultrapen Resources: MyronLMeters.com

Posted by 8 Apr, 2014

Tweet New Ultrapen Resources New Ultrapen Resources YouTube, Myron L Meters Blog, and Product Pages At Myron L Meters, we’ve been busy lately updating our YouTube Channel to bring you the latest product overviews, calibration, care and maintenance, and product features videos. We’ve been keeping them short and focused because we know you’re busy. We’re […]



New Ultrapen Resources


New Ultrapen Resources

YouTube, Myron L Meters Blog, and Product Pages

At Myron L Meters, we’ve been busy lately updating our YouTube Channel to bring you the latest product overviews, calibration, care and maintenance, and product features videos. We’ve been keeping them short and focused because we know you’re busy. We’re creating similar blog posts so you will always have your choice of video instruction overview and handy print reference. Have suggestions for videos?  Would you like a branded video for your company? Let us know at MyronLMeters@gmail.com.

Myron L Meters presents a review of the Ultrapen PT2 that measures pH. In this video, we cover the steps for measuring pH, changing the temperature setting, changing the pH measurement mode, and overall features.


Click to find out how!
“The Ultrapen PT2 is compact, reliable, easy to use and so far seems very durable while riding in its carry case between measurements. I use it daily and it reliably delivers PH and temperature.”
Calibration of the Ultrapen PT3 ORP Pen
The factory recommends calibrating twice a month, depending on usage. However, you should check the calibration whenever measurements are not as expected.
NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are using a proper ORP calibration solution. If the solution is correct, clean the sensor as described im the manual under Routine Maintenance. (Reconditioning the sensor should not be necessary due to the high ionic strength of the calibration solutions.) Restart calibration.
NOTE: Small bubbles trapped in the sensor may give a false calibration. After calibration is completed, measure the ORP calibration solution again to verify correct calibration. Remember, in measurement mode you must manually correct for temperature variance from 25ºC. Example: At 25ºC, ORP2602OZ calibration solution will read 260mV; however, at 20.0ºC ORP2602OZ will read 265mV.
NOTE: If at any point during calibration, you do not submerge the sensor in solution
before the flashing slows, allow the PT3 to turn off and start over.READ MORE
Our Ultrapen PT1 product overview video has been embedded on a Russian water products company website.
Want to stay up-to-date with Myron L Meters products?  Check out our blog and subscribe to our YouTube Channel.  You’ll get the latest maintenance tips, product updates, and more…
Cool CustomersAt Myron L Meters, we think all of our customers are cool, but when this guy ordered an Ultrameter II 6P we thought it was VERY cool. Thank you, Jason Statham. It just goes to show you that – even if you’re expendable – you want your meter to last.
You’ll find our complete selection of Ultrapens HERE.
Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
Pinterest
Pinterest
YouTube
YouTube
Google Plus
Google Plus
Tumblr
Tumblr


Copyright© , All rights reserved.

 

Categories : Uncategorized

Reverse Osmosis: MyronLMeters.com

Posted by 7 Apr, 2014

Tweet Reverse Osmosis   RO Meter – RO-1: 0-1250 ppm with color band RO Meters The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids […]



Reverse Osmosis



 

RO Meter – RO-1: 0-1250 ppm with color band
RO Meters
The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids (ppm/TDS) of any drinking water.
With a single ‘before and after’ test, this handy device effectively demonstrates how your RO or distillation system eliminates harmful dissolved solids. It will also service test systems, including membrane evaluation programs.Save $25.00 on the Ro-1 this month with coupon code: ROSave25

 

Ultrameter II – 6PIIConductivity, TDS, Salinity, pH, ORP, Temp Pens

Reverse osmosis biofouling

Introduction
Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by a biofouling problem –a problem related to biological material development which forms a sticky layer on the membrane surface (Flemming, 1997; Baker and Dudley, 1998).
Continuous biofouling problems in RO lead to higher energy input requirement as an effect of increased biofilm resistance (Rf) and biofilm enhanced osmotic pressure (BEOP), lower quality of product water due to concentration polarization (CP) – increased concentration due to solutes accumulation on the membrane surface, (Herzberg and Elimelech, 2007), and thus significant increase in both operating and maintenance costs.
Recent studies and objectives
Recent studies show the importance of the operating conditions (e.g. flux and cross flow velocities) in RO biofouling. The presence of feed channel spacers has also been getting more attention as it may have adverse effects. A previous study (Chong et al., 2008) without feed channel spacers showed that RO biofouling was a flux driven process where higher flux increased fouling rate.

READ MORE

 

Facebook
Facebook
Twitter
Twitter
Website
Website
YouTube
YouTube
Email
Email
Pinterest
Pinterest
Google Plus
Google Plus
Tumblr
Tumblr
LinkedIn
LinkedIn
 

ULTRAPEN Set – PT1, PT2, & PT3


Copyright © , All rights reserved.

Our mailing address is:

 

Categories : Uncategorized

Reverse Osmosis: MyronLMeters.com

Posted by 7 Apr, 2014

Tweet  Reverse Osmosis   RO Meter – RO-1: 0-1250 ppm with color band RO Meters The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids […]

 

Reverse Osmosis


 

RO Meter – RO-1: 0-1250 ppm with color band

RO Meters
The choice of professionals for years, this compact instrument has been designed specifically to demonstrate and test Point of Use (POU) reverse osmosis or distillation systems. By measuring electrical conductivity, it will quickly determine the parts per million/Total Dissolved Solids (ppm/TDS) of any drinking water.
With a single ‘before and after’ test, this handy device effectively demonstrates how your RO or distillation system eliminates harmful dissolved solids. It will also service test systems, including membrane evaluation programs.Save $25.00 on the Ro-1 this month with coupon code: ROSave25

 

Ultrameter II – 6PIIConductivity, TDS, Salinity, pH, ORP, Temp Pens

Reverse osmosis biofouling

Introduction
Water desalination via reverse osmosis (RO) technology provides a solution to the world’s water shortage problem. Until now, the production of fresh water from seawater has reached 21-million cubic meter per day all around the world (Wangnick, 2005). However, the success of RO technology is subject to improvement as the technology is challenged by a biofouling problem –a problem related to biological material development which forms a sticky layer on the membrane surface (Flemming, 1997; Baker and Dudley, 1998).
Continuous biofouling problems in RO lead to higher energy input requirement as an effect of increased biofilm resistance (Rf) and biofilm enhanced osmotic pressure (BEOP), lower quality of product water due to concentration polarization (CP) – increased concentration due to solutes accumulation on the membrane surface, (Herzberg and Elimelech, 2007), and thus significant increase in both operating and maintenance costs.

Recent studies and objectives
Recent studies show the importance of the operating conditions (e.g. flux and cross flow velocities) in RO biofouling. The presence of feed channel spacers has also been getting more attention as it may have adverse effects. A previous study (Chong et al., 2008) without feed channel spacers showed that RO biofouling was a flux driven process where higher flux increased fouling rate.

READ MORE

 

Facebook
Facebook
Twitter
Twitter
Website
Website
YouTube
YouTube
Email
Email
Pinterest
Pinterest
Google Plus
Google Plus
Tumblr
Tumblr
LinkedIn
LinkedIn
 

ULTRAPEN Set – PT1, PT2, & PT3

Copyright © , All rights reserved.

Our mailing address is:

 

Categories : Application Advice, Case Studies & Application Stories, Science and Industry Updates, Technical Tips