Measuring Key Water Quality Parameters: MyronLMeters.com

Posted by 12 Apr, 2014

TweetThe right meter is essential for measuring any of several key water quality parameters:Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed […]

The right meter is essential for measuring any of several key water quality parameters:

Conductivity is the ability of water to conduct an electrical current and is an indirect measure of the conductive ionic mineral concentration. The more conductive ions that are present, the more electricity can be conducted by the water. This measurement is expressed in microsiemens per centimeter (µS/cm) at 25º Celsius. Myron L Meters carries a complete line of conductivity meters, including the Ultrameter II 4P.

Resistivity is the inverse of conductivity. Electrical conductivity is a measure of water’s resistance to an electric current. Water itself has a weak electrical conductivity. Electric current is transported in water by dissolved ions, making conductivity measurement a quick and reliable way to monitor the total amount of ionic contaminants in water. Myron L Meters carries a complete line of resistivity meters, including inline monitor/controllers like the 753II Resistivity Digital Monitor/Controller.

Total Dissolved Solids (TDS) is also a measurement of the amount of dissolved minerals in the water. In this instance they would be called solids in solution. The quantity of dissolved solids in the solution is directly proportional to the conductivity. In this case, conductivity is the measurement but it is used to estimate TDS. It is measured with a conductivity meter but is reported as TDS in parts per million (ppm), via a complex algorithm. Myron L Meters carries a complete line of TDS meters, including the Ultrapen PT1.

pH is a measure of the concentration of hydrogen ions in the water, indicating the acidity or alkalinity of the water. On the pH scale of 0-14, a reading of 7 is considered to be neutral. Readings below 7 indicate acidic conditions, while readings above 7 indicate the water is alkaline or basic. Naturally occurring fresh waters have a pH range between 6 and 8. Myron L Meters carries a complete line of pH meters, including the Ultrapen PT2

Temperature is expressed in degrees Celsius (C) or Fahrenheit (F). Most digital handheld Myron L Meters include a temperature function.



Oxidation reduction potential (ORP)can correlate millivolt readings to the sanitization strength of the water. Microbes can cause corrosion, fouling, and disease, and oxidizing biocides are usually used to keep microbial levels under control. ORP is expressed in millivolts (mV). Myron L Meters carries a complete line of ORP meters, including the Ultrapen PT3

Free Chlorine refers to both hypochlorous acid (HOCl) and the hypochlorite (OCl–) ion or bleach, and is commonly added to water systems for disinfection. Free chlorine is typically measured in drinking water disinfection systems to find whether the water system contains enough disinfectant.  Myron L Meters Ultrameter II 6PFCe and Ultrapen PT4 can both be used to measure free chlorine.

Salinity is simply a measure of the amount of salts dissolved in water, a measurement useful to pool service technicians and others.  You can measure salinity with a Myron L Pool Pro PS6.

Alkalinity is a measure of the capacity of water or any solution to neutralize or “buffer” acids. This measure of acid-neutralizing capacity is important in figuring out how “buffered” the water is against sudden changes in pH. Alkalinity is a titration function of the Ultrameter III 9PTKA.

Hardness is caused by compounds of calcium and magnesium, and by a variety of other metals.  As water moves through soil and rock, it dissolves very small amounts of minerals and holds them in solution. Calcium and magnesium dissolved in water are the two most common minerals that make water “hard.” Hardness is a titration function of the Ultrameter III 9PTKA.

LSI or Langelier Saturation Index helps you determine the scaling potential of water. LSI is a calculated number used to predict the calcium carbonate stability of water. It indicates whether the water will precipitate, dissolve, or be in equilibrium with calcium carbonate. LSI is a titration function of the Ultrameter III 9PTKA.

MyronLMeters.com is the premier internet retailer of accurate, reliable Myron L meters.  Save 10% when you order Myron L meters online at MyronLMeters.com. You’ll find reliable instruments for every water quality parameter mentioned above.



 

 

 

Categories : Uncategorized

Ultrapen PT4 Free Chlorine Pen Maintenance: MyronLMeters.com

Posted by 4 Apr, 2014

Tweet how to maintain and clean free chlorine sensor for the ultrapen pt4 Ultrapen PT4 Free Chlorine Pen MAINTENANCEI. Routine Maintenance1. ALWAYS rinse the FCE sensor with clean water after each use.2. ALWAYS replace the soaker cap half filled with Sensor Storage Solution to prevent thesensor from drying out after each use.3. Do not drop, […]

how to maintain and clean free chlorine sensor for the ultrapen pt4 how to maintain and clean free chlorine sensor for the ultrapen pt4

Ultrapen PT4 Free Chlorine Pen

MAINTENANCEI. Routine Maintenance1. ALWAYS rinse the FCE sensor with clean water after each use.2. ALWAYS replace the soaker cap half filled with Sensor Storage Solution to prevent thesensor from drying out after each use.3. Do not drop, throw, or otherwise strike the PT4. This voids the warranty.4. Do not store the PT4 in a location where the ambient temperatures exceed its specified Operating/Storage Temperature limits.

II. Battery Replacement The PT4 display has a battery indicator that depicts the liferemaining in the battery. When the indicator icon is at 3 bars, the battery is full. When the indicator icon falls to 1 bar, replace the battery with an N type battery.

Capture

 

 

 

 

 

1. In a clean/dry environment, unscrew the pen cap in a counter-clockwise motion.2. Slide the cap and battery housing out of the PT4.3. Remove the depleted battery out of its housing.4. Insert a new battery into the battery housing oriented with the negative end touching the spring.5. Align the groove along the battery housing with the guide bump inside the PT4case and slide the battery housing back in.6. Screw the PT4 cap back on in a clockwise direction. Do not over tighten.

III. Sensor Cleaning (additional sensor cleaning methods at www.myronl.com) Cleaning the sensor: The Myron L Company recommends cleaning your sensor every two weeks, however this depends on application and frequency of use. Indications of a dirty sensor are slower and/or erroneous readings.There are three critical components in your PT4 sensor; a very sensitive glass pH sensor bulb, a platinum ORP electrode, and a temperature sensor encapsulated in a small glass noid. Use extreme caution when cleaning your PT4 sensor.To clean your sensor, select one of the following methods:• Basic Cleaning: Using a solution made of dish soap mixed with water and a cotton swab, gently clean the inside of the sensor body and platinum electrode, rinse thoroughly with clean water, then recondition the sensor.• Cleaning the pH Sensor Bulb: If the sensor becomes dirty, clean the sensor surface with an isopropyl soaked cotton swab. Then rinse thoroughly with clean water.• Deep cleaning the platinum ORP electrode: Using the ORP electrode cleaning paper and water, gently clean the platinum electrode, rinse thoroughly then recondition the sensor.To recondition the sensor: Rinse the sensor thoroughly with clean water, then allow it to soak in Storage Solution for a minimum of 1 hour (for best results allow the sensor to soak in Storage Solution overnight).

IV. FCE Sensor ReplacementCAUTION: Only Remove/Replace the FCE sensor in a CLEAN and DRYenvironment!To remove the FCE sensor: Remove the soaker cap; make sure the PT4 (including the FCE sensor) is clean and dry.Loosen the battery tray (to allow pressure equalization).Then firmly grasp the FCE sensor body and slowly pull the FCE sensor out.To install a new FCE sensor: Line up the alignment tabs on the FCE sensor with the alignment slots on the PT4 unit. Gently push the FCE sensor into position, then close the battery cap.

You will need: RPT4  Replacement FCE Sensor (with instructions)

MyronLMeters.com is the premier internet retailer of the Ultrapen PT4 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Uncategorized

Ultrapen PT4 Free Chlorine Pen Maintenance: MyronLMeters.com

Posted by 4 Apr, 2014

TweetUltrapen PT4 Free Chlorine Pen MAINTENANCE I. Routine Maintenance 1. ALWAYS rinse the FCE sensor with clean water after each use. 2. ALWAYS replace the soaker cap half filled with Sensor Storage Solution to prevent the sensor from drying out after each use. 3. Do not drop, throw, or otherwise strike the PT4. This voids […]

how to maintain and clean free chlorine sensor for the ultrapen pt4

how to maintain and clean free chlorine sensor for the ultrapen pt4

Ultrapen PT4 Free Chlorine Pen

MAINTENANCE
I. Routine Maintenance
1. ALWAYS rinse the FCE sensor with clean water after each use.
2. ALWAYS replace the soaker cap half filled with Sensor Storage Solution to prevent the
sensor from drying out after each use.
3. Do not drop, throw, or otherwise strike the PT4. This voids the warranty.
4. Do not store the PT4 in a location where the ambient temperatures exceed its specified Operating/Storage Temperature limits.

II. Battery Replacement The PT4 display has a battery indicator that depicts the life
remaining in the battery. When the indicator icon is at 3 bars, the battery is full. When the indicator icon falls to 1 bar, replace the battery with an N type battery.

Capture

 

 

 

 

 

1. In a clean/dry environment, unscrew the pen cap in a counter-clockwise motion.
2. Slide the cap and battery housing out of the PT4.
3. Remove the depleted battery out of its housing.
4. Insert a new battery into the battery housing oriented with the negative end touching the spring.
5. Align the groove along the battery housing with the guide bump inside the PT4
case and slide the battery housing back in.
6. Screw the PT4 cap back on in a clockwise direction. Do not over tighten.

III. Sensor Cleaning (additional sensor cleaning methods at www.myronl.com) Cleaning the sensor: The Myron L Company recommends cleaning your sensor every two weeks, however this depends on application and frequency of use. Indications of a dirty sensor are slower and/or erroneous readings.
There are three critical components in your PT4 sensor; a very sensitive glass pH sensor bulb, a platinum ORP electrode, and a temperature sensor encapsulated in a small glass noid. Use extreme caution when cleaning your PT4 sensor.
To clean your sensor, select one of the following methods:
• Basic Cleaning: Using a solution made of dish soap mixed with water and a cotton swab, gently clean the inside of the sensor body and platinum electrode, rinse thoroughly with clean water, then recondition the sensor.
• Cleaning the pH Sensor Bulb: If the sensor becomes dirty, clean the sensor surface with an isopropyl soaked cotton swab. Then rinse thoroughly with clean water.
• Deep cleaning the platinum ORP electrode: Using the ORP electrode cleaning paper and water, gently clean the platinum electrode, rinse thoroughly then recondition the sensor.
To recondition the sensor: Rinse the sensor thoroughly with clean water, then allow it to soak in Storage Solution for a minimum of 1 hour (for best results allow the sensor to soak in Storage Solution overnight).

IV. FCE Sensor Replacement
CAUTION: Only Remove/Replace the FCE sensor in a CLEAN and DRY
environment!
To remove the FCE sensor: Remove the soaker cap; make sure the PT4 (including the FCE sensor) is clean and dry.
Loosen the battery tray (to allow pressure equalization).
Then firmly grasp the FCE sensor body and slowly pull the FCE sensor out.
To install a new FCE sensor: Line up the alignment tabs on the FCE sensor with the alignment slots on the PT4 unit. Gently push the FCE sensor into position, then close the battery cap.

You will need: RPT4  Replacement FCE Sensor (with instructions)

MyronLMeters.com is the premier internet retailer of the Ultrapen PT4 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Care and Maintenance, Product Updates, Technical Tips

Ultrapen PT4 Free Chlorine Pen Calibration: MyronLMeters.com

Posted by 4 Apr, 2014

TweetIV. Calibration of the Ultrapen PT4 Free Chlorine Pen The manufacturer recommends calibrating twice a month, depending on usage. However, you should check the calibration whenever measurements are not as expected. For greatest accuracy, you should perform a 3-point wet pH calibration, and wet ORP calibration with the ORP Standard Solution closest in value to […]

how to calibrate free chlorine for the ultrapen pt4

how to calibrate free chlorine for the ultrapen pt4

IV. Calibration of the Ultrapen PT4 Free Chlorine Pen

The manufacturer recommends calibrating twice a month, depending on usage.

However, you should check the calibration whenever measurements are not as expected. For greatest accuracy, you should perform a 3-point wet pH calibration, and wet ORP calibration with the ORP Standard Solution closest in value to the solution you will be testing.

NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are using a proper Myron L Company pH Buffer or ORP Standard Solution. If the solution is correct, clean the sensor as described in Sensor Cleaning section on page 4 of the operations manual. Restart calibration.

NOTE: Small bubbles trapped in the sensor may give a false calibration. After calibration is completed, measure the pH Buffer or ORP Standard Solutions again in solution check mode “SOL ck” (see pages 3 and 4 of the operations manual) to verify correct calibration.

NOTE: If at any point during calibration, you do not submerge the sensor in solution before the flashing slows, allow the PT4 to power off and start over.
NOTE: You should always calibrate with pH 7 first.

A. Calibration preparation
For maximum accuracy, fill 2 clean containers with each pH Buffer and/or ORP Standard Solution. Arrange them in such a way that you can clearly remember which is the rinse solution and which is the calibration standard/buffer. If you don’t have enough standard/ buffer, you can use 1 container of each standard/buffer for calibration and 1 container of clean water for all rinsing. Always rinse the FCE sensor between standard/buffer solutions. Ensure the FCE sensor is clean and free of debris.

B. pH Calibration using pH 7, 4, and 10 Buffer Solutions.
NOTE: You should always calibrate with pH 7 first.
1. Thoroughly rinse the PT4 by submerging the sensor in pH 7 Buffer rinse solution and swirling it around.
2. Push and release the push button to turn the PT4 on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
4. Release the button when “CAL” displays.
5. The display will alternate between “PUSHnHLD” and “CAL.
6. Push and hold the button, The display will alternate between “PH” and “ORP”.
7. Release the button when “PH” is displayed.
8. The display will indicate “CAL” and the LED will flash rapidly.
9. While the LED flashes rapidly, dip the PT4 in pH 7 Buffer Calibration Solution so that the sensor is completely submerged.
10. While the LED flashes slowly, the pH calibration point will display along with “CAL”.
Swirl the PT4 around to remove bubbles, keeping the sensor submerged.
11. If the pH 7 calibration is successful, the display will indicate “SAVEd”, then “PUSHCONT” will be displayed (“PUSHCONT” will NOT be displayed if only calibrated with pH 4 or 10).
12. Push and release to continue or let the unit time out to exit after a 1-point or 2-point calibration.
13. Repeat steps 9 through 12 with pH 4 and 10 Buffer Solutions. After the 3rd calibration point is successfully saved, the display will indicate “SAVEd” and power off.
14. Verify calibration by retesting the calibration solution in solution check mode “SOL ck”, see section V below.

C. ORP Calibration using 80mV Quinhydrone, 260mV Quinhydrone, or 470mV MLC Light’s ORP Standard Solution.
NOTE: The PT4 has automatic temperature compensation in ORP calibration mode (from 15ºC to 30ºC).
1. Follow pH calibration steps 1 through 6, using ORP Solutions.
2. Release the button when “ORP” is displayed.
3. The display will indicate “CAL” and the LED will flash rapidly.
4. While the LED flashes rapidly, dip the PT4 in ORP Standard Solution so that the
sensor is completely submerged.
5. While the LED flashes slowly, the ORP calibration point will display along with “CAL”.
Swirl the PT4 around to remove any air bubbles, keeping the sensor submerged.
6. If the ORP calibration is successful, the display will indicate “CAL SAVEd”, then time out.
7. Verify calibration by retesting the calibration solution in solution check mode.

V. SOLUTION CHECK
Solution check is provided to verify the proper calibration value was recorded when using pH Buffers and ORP Standard Solutions. To verify proper calibration, simply put the PT4 into solution check mode, select the mode to verify (pH or ORP), then dip the sensor into the pH Buffer or ORP Calibration Solution so that the sensor is completely submerged and swirl around to release any air bubbles, then verify displayed value matches the value on the bottle.

To perform Solution Check:
1. Push and release the push button to turn the PT4 on.
2. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
3. Release the button when “SOL ck” displays.
4. The display will alternate between “PUSHnHLD” and “SOL ck”.
5. Push and hold the button, The display will alternate between “PH” and “ORP”.
6. Release the button when desired mode (pH or ORP) is displayed.
7. While the LED flashes rapidly, dip the PT4 in FRESH buffer/calibration solution so that the sensor is completely submerged and swirl the PT4 around to remove any air bubbles.
8. Verify value displayed is correct.
NOTE: To verify ORP calibration while in solution check mode, you must manually correct for temperature variations from 25ºC. See instructions that come with the ORP Standard Solutions for temperature chart.

VI. Factory Calibration
When pH Buffers are not available, the PT4 can be returned to factory default calibration using the FAC CAL function. This will erase any stored wet calibration.
NOTE: Default factory calibration resets the electronics only and does NOT take the condition of the sensor into consideration.
To return your PT4 to factory calibration:
1. Push and release the push button.
2. Push and hold the button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
3. Release the button when “FAC CAL” displays. The display will alternate between “PUSHnHLD” and “FAC CAL”.
4. Push and hold the push button. “SAVEd FAC” displays indicating the pen has been reset to its factory calibration.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT4 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Ultrapen PT4 Free Chlorine Pen Measurement: MyronLMeters.com

Posted by 4 Apr, 2014

TweetOPERATING INSTRUCTIONS Ultrapen PT4 Free Chlorine Pen NOTE: Selecting “ESC” from any menu immediately powers the PT4 off without saving changes. I. Temperature Unit Selection The PT4 allows you to select the type of units used for displaying temperature: ˚C (Degrees Celsius) or ˚F (Degrees Fahrenheit). To set the preference: 1. Push and release the push […]

how to measure free chlorine with the ultrapen pt4

how to measure free chlorine with the ultrapen pt4

OPERATING INSTRUCTIONS Ultrapen PT4 Free Chlorine Pen
NOTE: Selecting “ESC” from any menu immediately powers the PT4 off without saving changes.

I. Temperature Unit Selection
The PT4 allows you to select the type of units used for displaying temperature:
˚C (Degrees Celsius) or ˚F (Degrees Fahrenheit).
To set the preference:
1. Push and release the push button to turn the PT4 on.
2. Push and hold the button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
3. Release the button while “ºCºF TEMP” is displayed. The display will alternate between “PUSHnHLD” and “ºCºF TEMP”.
4. Push and hold the button. The display will alternate between “˚C”, “˚F” and “ESC”.
Release the button when desired unit preference displays.
5. “SAVEd ºC” or “SAVEd ºF” will display; then the unit will power off.

II. FCE Mode Selection
The PT4 allows you to select the FCE measurement mode you prefer:
Hold Mode (default) — will display real-time readings until stable or 2 minutes, which ever
comes fi then display fi readings.
LIVE Mode — real-time readings are displayed continuously for up to 5 minutes, a push and release of the button will turn your PT4 off immediately.
To set the FCE measurement mode preference:
1. Push and release the push button to turn the PT4 on.
2. Push and hold the button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
3. Release the button when “ModE SEL” is displayed. The display will alternate between “PUSHnHLD” and “ModE SEL”.
4. Push and hold the push button. The display will alternate between “Hold”, “LIVE” and “ESC”.
5. Release the button when desired mode displays.
6. “SAVEd” will display, then the PT4 will power off.

III. FCE Measurement
The following table explains what the LED Indicator Light signals indicate and gives the duration of each signal:

Capture

 

 

 

CAUTION: To measure solution at the extremes of the specified temperature or FCE range, allow the PT4 to equilibrate by submerging the sensor in the sample solution for 1 minute prior to taking a measurement.

NOTE: If you cannot dip the PT4 in the sample solution, pour the sample into a clean container. If you don’t have a container or need to test a vertical stream of solution, use the scoop to hold sample solution.
1. Rinse the pen 3 times in a sample of the solution.
2. Push and release the push button.
3. While the LED flashes rapidly, dip the PT4 in FRESH sample solution so that the sensor is completely submerged. If you do not submerge the sensor in solution before the flashing slows, allow the PT4 to power off and retake the reading.
4. While the LED flashes slowly, swirl the PT4 around to remove any air bubbles, keeping the sensor submerged.
a. In Hold mode when the LED turns on solid, remove the PT4 from solution. The display will alternate between the final FCE and temperature readings. Note the readings for your records.
b. In LIVE mode allow the PT4 to remain in solution while the LED flashes slowly. The display will alternate between live FCE and temperature readings. Note the readings for your records. LIVE measurement will time out after 5 minutes OR push and release the push button to turn the PT4 off at any time during LIVE measurement.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT4 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Application Advice, Product Updates, Technical Tips

Ultrapen PT4 Free Chlorine Pen Features: MyronLMeters.com

Posted by 4 Apr, 2014

TweetThe Myron L ULTRAPEN™ PT4 Free Chlorine Pen is designed to be extremely accurate, fast, and simple to use in diverse water quality applications. Advanced features include automatic temperature compensation in calibration mode; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. A true one-handed instrument, the PT4 is easy to calibrate and easy to […]

The Myron L ULTRAPEN™ PT4 Free Chlorine Pen is designed to be extremely accurate, fast, and simple to use in diverse water quality applications. Advanced features include automatic temperature compensation in calibration mode; highly stable microprocessor-based circuitry; user-intuitive design; and waterproof housing. A true one-handed instrument, the PT4 is easy to calibrate and easy to use. To take a measurement, you simply push a button then dip the PT4 in solution. Results display in seconds.

Capture

FEATURES
1. Push Button — turns PT4 on; selects mode and unit preferences.
2. Battery Cap — provides access to battery for replacement.
3. pocket Clip — holds PT4 to shirt pocket for secure storage.
4. Battery Indicator — indicates life remaining in battery.
5. Display — displays measurements, menu options, battery indicator, and firmware revision
(during power-up).
6. LED Indicator Light — indicates when to dip PT4 in solution, when measurement is in progress, and when to remove PT4 from solution.
7. FCE Sensor — measures Free Chlorine Equivalent of a solution.
8. Soaker Cap — contains Sensor Storage Solution to maintain sensor hydration. To remove, twist the soaker cap while pulling off using caution not to spill the Storage Solution. To replace, fill the soaker cap half full with Storage Solution. Twist the soaker cap while pushing back on, using caution, as excess Storage Solution may squirt out.
CAUTION: Do NOT push the soaker cap beyond the Cap Stop as sensor damage WILL
occur.
NOTE: The formation of KCl crystals around the soaker cap is normal. These crystals do not affect the sensor life, performance, or accuracy provided they are rinsed off with water prior to a test.
9. Scoop — used to hold sample solution when dipping is not possible. To install, push the scoop onto the sensor while shifting side-to-s
scoop off while shifting side-to-side. Verify the fully inserted into the PT4. If not, reinstall per FCE Sensor Replacement section on page 5. To use, hold the scoop directly under a vertical stream during measurement, avoiding bubbles.
10. Holster — run your belt through the strap in the back of the holster for hands-free portability.
11. Lanyard — attach through hole in top of pocket clip.
12. ORP Electrode Cleaning paper — for deep cleaning the platinum electrode.

Specifications
Free Chlorine: 0.00 – 10.00ppm
Free Chlorine Accuracy: < 5.00ppm ±0.3ppm, ≥ 5.00ppm ±0.5ppm
Free Chlorine Resolution: 0.01 ppm
Temperature Range: 0 – 71° C / 32 – 160° F
Temperature Accuracy: ± 0.1 ºC / ± 0.1 ºF
Temperature Resolution: 0.1ºC/0.1ºF
Time to Reading Stabilization: 10 – 45 seconds
Power Consumption: Active Mode 37 mA, Sleep Mode 2 μA
Temperature Compensation: Automatic In Calibration Mode From 15ºC to 30ºC
Physical Dimensions: 17.15 cm L x 1.59 cm D or 6.75 in. L x .625 in. D
Weight: 50.4 g / 1.78 oz. (without soaker cap and lanyard)
Case Material: Anodized Aircraft Aluminum with Protective Coating
Battery: One N type, Alkaline, 1.5V
Operating/Storage Temperature: 0 – 55ºC or 32 – 131ºF
Calibration Standard Solutions: pH4, pH7, pH10, ORP80, ORP260, ORP470
Enclosure Ratings: IP67 and NEMA6
EN61236-1: 2006 – Annex A: 2008: Electrostatic discharge to the PT4 may cause it to spontaneously turn on. If this occurs, the PT4 will turn off.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT4 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Categories : Product Updates, Technical Tips