DEIONIZED WATER APPLICATIONS: MyronLMeters.com

Posted by 11 Apr, 2014

TweetYears ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.THE DEIONIZATION PROCESSThe vast majority of dissolved impurities in […]

Years ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.

THE DEIONIZATION PROCESSThe vast majority of dissolved impurities in modern water supplies are ions such as calcium, sodium, chlorides, etc. The deionization process removes ions from water via ion exchange. Positively charged ions (cations) and negatively charged ions (anions) are exchanged for hydrogen (H+) and hydroxyl (OH-) ions, respectively, due to the resin’s greater affinity for other ions. The ion exchange process occurs on the binding sites of the resin beads. Once depleted of exchange capacity, the resin bed is regenerated with concentrated acid and caustic which strips away accumulated ions through physical displacement, leaving hydrogen or hydroxyl ions in their place.

DEIONIZER TYPESDeionizers exist in four basic forms: disposable cartridges, portable exchange tanks, automatic units, and continuous units. A two-bed system employs separate cation and anion resin beds. Mixed-bed deionizers utilize both resins in the same vessel. The highest quality water is produced by mixed-bed deionizers, while two-bed deionizers have a larger capacity. Continuous deionizers, mainly used in labs for polishing, do not require regeneration.

TESTING Dl WATER QUALITYWater quality from deionizers varies with the type of resins used, feed water quality, flow, efficiency of regeneration, remaining capacity, etc. Because of these variables, it is critical in many Dl water applications to know the precise quality. Resistivity/ conductivity is the most convenient method for testing Dl water quality. Deionized pure water is a poor electrical conductor, having a resistivity of 18.2 million ohm-cm (18.2 megohm) and conductivity of 0.055 microsiemens. It is the amount of ionized substances (or salts) dissolved in the water which determines water’s ability to conduct electricity. Therefore, resistivity and its inverse, conductivity, are good general purpose quality parameters.

Because temperature dramatically affects the conductivity of water, conductivity measurements are internationally referenced to 25°C to allow for comparisons of different samples. With typical water supplies, temperature changes the conductivity an average of 2%/°C, which is relatively easy to compensate. Deionized water, however, is much more challenging to accurately measure since temperature effects can approach 10%/°C! Accurate automatic temperature compensation, therefore, is the “heart’ of any respectable instrument.

RECOMMENDED MYRON L METERSPortable instruments are typically used to measure Dl water quality at points of use, pinpoint problems in a Dl system confirm monitor readings, and test the feed water to the system. The handheld Myron L meters have been the first choice of Dl water professionals for many years. For two-bed Dl systems, there are several usable models with displays in either microsiemens or ppm (parts per million) of total dissolved solids. The most versatile instruments for Dl water is the 4P or 6PFCE Ultrameter II™, which can measure both ultrapure mixedbed quality water and unpurified water. It should be noted that once Dl water leaves the piping, its resistivity will drop because the water absorbs dissolved carbon dioxide from the air. Measuring of ultrapure water with a hand-held instrument requires not only the right instrument, but the right technique to obtain accurate, repeatable readings. Myron L meters offer the accuracy and precision necessary for ultrapure water measurements.

Inline Monitor/controllers are generally used in the more demanding Dl water applications. Increased accuracy is realized since the degrading effect of carbon dioxide on high purity water is avoided by use of an in-line sensor (cell). This same degradation of ultrapure water is the reason there are no resistivity calibration standard solutions (as with conductivity instruments). Electronic sensor substitutes are normally used to calibrate resistivity Monitor/controllers.

Myron L Meters carries a variety of inline instruments, including resistivity Monitor/controllers designed specifically for Dl water. Seven resistivity ranges are available to suit any Dl water application: 0-20 megohm, 0-10 megohm, 0-5 megohm, 0-2 megohm, 0-1 megohm, 0-500 kilohm, and 0-200 kilohm. Temperature compensation is automatic and achieved via a dual thermistor circuit. Monitor/controller models contain an internal adjustable set point, piezo alarm connectors and a heavy-duty 10 amp relay circuit which can be used to control an alarm, valves, pump, etc. Available options include 4-20 milliamp output, 3 sensor input, 3 range capability and temperature. Internal electronic sensor substitutes are standard on all Monitor/controllers.

Sensors are available constructed in either 316 stainless steel or titanium. All sensors are provided with a 3/4” MNPT polypropylene bushing and 10 ft./3 meters of cable. Optional PVDF or stainless steel bushings can be ordered, as well as longer cable lengths up to 100 ft./30 meters.

The following table briefly covers recommended Myron L meters for Dl water applications.

DEIONIZED WATER APP TABLE

Capture

 

MyronLMeters.com is the premier internet retailer for all recommended Myron L meters above. Save 10% when you order online at MyronLMeters.com.

Categories : Uncategorized

DEIONIZED WATER APPLICATIONS: MyronLMeters.com

Posted by 11 Apr, 2014

TweetYears ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash. THE DEIONIZATION PROCESS The vast majority of dissolved […]

Years ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.

THE DEIONIZATION PROCESS
The vast majority of dissolved impurities in modern water supplies are ions such as calcium, sodium, chlorides, etc. The deionization process removes ions from water via ion exchange. Positively charged ions (cations) and negatively charged ions (anions) are exchanged for hydrogen (H+) and hydroxyl (OH-) ions, respectively, due to the resin’s greater affinity for other ions. The ion exchange process occurs on the binding sites of the resin beads. Once depleted of exchange capacity, the resin bed is regenerated with concentrated acid and caustic which strips away accumulated ions through physical displacement, leaving hydrogen or hydroxyl ions in their place.

DEIONIZER TYPES
Deionizers exist in four basic forms: disposable cartridges, portable exchange tanks, automatic units, and continuous units. A two-bed system employs separate cation and anion resin beds. Mixed-bed deionizers utilize both resins in the same vessel. The highest quality water is produced by mixed-bed deionizers, while two-bed deionizers have a larger capacity. Continuous deionizers, mainly used in labs for polishing, do not require regeneration.

TESTING Dl WATER QUALITY
Water quality from deionizers varies with the type of resins used, feed water quality, flow, efficiency of regeneration, remaining capacity, etc. Because of these variables, it is critical in many Dl water applications to know the precise quality. Resistivity/ conductivity is the most convenient method for testing Dl water quality. Deionized pure water is a poor electrical conductor, having a resistivity of 18.2 million ohm-cm (18.2 megohm) and conductivity of 0.055 microsiemens. It is the amount of ionized substances (or salts) dissolved in the water which determines water’s ability to conduct electricity. Therefore, resistivity and its inverse, conductivity, are good general purpose quality parameters.

Because temperature dramatically affects the conductivity of water, conductivity measurements are internationally referenced to 25°C to allow for comparisons of different samples. With typical water supplies, temperature changes the conductivity an average of 2%/°C, which is relatively easy to compensate. Deionized water, however, is much more challenging to accurately measure since temperature effects can approach 10%/°C! Accurate automatic temperature compensation, therefore, is the “heart’ of any respectable instrument.

RECOMMENDED MYRON L METERS
Portable instruments are typically used to measure Dl water quality at points of use, pinpoint problems in a Dl system confirm monitor readings, and test the feed water to the system. The handheld Myron L meters have been the first choice of Dl water professionals for many years. For two-bed Dl systems, there are several usable models with displays in either microsiemens or ppm (parts per million) of total dissolved solids. The most versatile instruments for Dl water is the 4P or 6PFCE Ultrameter II™, which can measure both ultrapure mixedbed quality water and unpurified water. It should be noted that once Dl water leaves the piping, its resistivity will drop because the water absorbs dissolved carbon dioxide from the air. Measuring of ultrapure water with a hand-held instrument requires not only the right instrument, but the right technique to obtain accurate, repeatable readings. Myron L meters offer the accuracy and precision necessary for ultrapure water measurements.

Inline Monitor/controllers are generally used in the more demanding Dl water applications. Increased accuracy is realized since the degrading effect of carbon dioxide on high purity water is avoided by use of an in-line sensor (cell). This same degradation of ultrapure water is the reason there are no resistivity calibration standard solutions (as with conductivity instruments). Electronic sensor substitutes are normally used to calibrate resistivity Monitor/controllers.

Myron L Meters carries a variety of inline instruments, including resistivity Monitor/controllers designed specifically for Dl water. Seven resistivity ranges are available to suit any Dl water application: 0-20 megohm, 0-10 megohm, 0-5 megohm, 0-2 megohm, 0-1 megohm, 0-500 kilohm, and 0-200 kilohm. Temperature compensation is automatic and achieved via a dual thermistor circuit. Monitor/controller models contain an internal adjustable set point, piezo alarm connectors and a heavy-duty 10 amp relay circuit which can be used to control an alarm, valves, pump, etc. Available options include 4-20 milliamp output, 3 sensor input, 3 range capability and temperature. Internal electronic sensor substitutes are standard on all Monitor/controllers.

Sensors are available constructed in either 316 stainless steel or titanium. All sensors are provided with a 3/4″ MNPT polypropylene bushing and 10 ft./3 meters of cable. Optional PVDF or stainless steel bushings can be ordered, as well as longer cable lengths up to 100 ft./30 meters.

The following table briefly covers recommended Myron L meters for Dl water applications.

DEIONIZED WATER APP TABLE

Capture

 

MyronLMeters.com is the premier internet retailer for all recommended Myron L meters above. Save 10% when you order online at MyronLMeters.com.

Categories : Application Advice, Case Studies & Application Stories, Product Updates, Science and Industry Updates, Technical Tips

Application Bulletin: Deionized Water – MyronLMeters.com

Posted by 15 Sep, 2012

TweetYears ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash. THE DEIONIZATION PROCESS The vast majority of dissolved […]

Years ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.

THE DEIONIZATION PROCESS

The vast majority of dissolved impurities in modern water supplies are ions such as calcium, sodium, chlorides, etc. The deionization process removes ions from water via ion exchange. Positively charged ions (cations) and negatively charged ions (anions) are exchanged for hydrogen (H+) and hydroxyl (OH-) ions, respectively, due to the resin’s greater affinity for other ions. The ion exchange process occurs on the binding sites of the resin beads. Once depleted of exchange capacity, the resin bed is regenerated with concentrated acid and caustic which strips away accumulated ions through physical displacement, leaving hydrogen or hydroxyl ions in their place.

DEIONIZER TYPES

Deionizers exist in four basic forms: disposable cartridges, portable exchange tanks, automatic units, and continuous units. A two-bed system employs separate cation and anion resin beds. Mixed-bed deionizers utilize both resins in the same vessel. The highest quality water is produced by mixed-bed deionizers, while two-bed deionizers have a larger capacity. Continuous deionizers, mainly used in labs for polishing, do not require regeneration.

TESTING Dl WATER QUALITY

Water quality from deionizers varies with the type of resins used, feed water quality, flow, efficiency of regeneration, remaining capacity, etc. Because of these variables, it is critical in many Dl water applications to know the precise quality. Resistivity/ conductivity is the most convenient method for testing Dl water quality. Deionized pure water is a poor electrical conductor, having a resistivity of 18.2 million ohm-cm (18.2 megohm) and conductivity of 0.055 microsiemens. It is the amount of ionized substances (or salts) dissolved in the water which determines water’s ability to conduct electricity. Therefore, resistivity and its inverse, conductivity, are good general purpose quality parameters.

Because temperature dramatically affects the conductivity of water, conductivity measurements are internationally referenced to 25°C to allow for comparisons of different samples. With typical water supplies, temperature changes the conductivity an average of 2%/°C, which is relatively easy to compensate. Deionized water, however, is much more challenging to accurately measure since temperature effects can approach
10%/°C! Accurate automatic temperature compensation, therefore, is the “heart’ of any respectable instrument.

RECOMMENDED INSTRUMENTATION

Portable instruments are typically used to measure Dl water quality at points of use, pinpoint problems in a Dl system confirm monitor readings, and test the feed water to the system. The handheld Myron L meters have been the first choice of Dl water professionals for many years. For two-bed Dl systems, there are several usable models with displays in either microsiemens or ppm (parts per million) of total dissolved solids. The most versatile instruments for Dl water is the 4P or 6P Ultrameter II™, which can measure both ultrapure mixed- bed quality water and unpurified water. It should be noted that once Dl water leaves the piping, its resistivity will drop because the water absorbs dissolved carbon dioxide from the air. Measuring of ultrapure water with a hand-held instrument requires not only the right instrument, but the right technique to obtain accurate, repeatable readings. Myron L meters offer the accuracy and precision necessary for ultrapure water measurements.

In-line Monitor/controllers are generally used in the more demanding Dl water applications. Increased accuracy is realized since the degrading effect of carbon dioxide on high purity water is avoided by use of an in-line sensor (cell). This same degradation of ultrapure water is the reason there are no resistivity calibration standard solutions (as with conductivity instruments). Electronic sensor substitutes are normally used to calibrate resistivity Monitor/controllers.

Myron L manufactures a variety of in-line instruments, including resistivity Monitor/controllers which are designed specifically for Dl water. Seven resistivity ranges are available to suit any Dl water application: 0-20 megohm, 0-10 megohm,
0-5 megohm, 0-2 megohm, 0-1 megohm, 0-500 kilohm, and 0-200 kilohm. Temperature compensation is automatic and achieved via a dual thermistor circuit. Monitor/controller models contain an internal adjustable set point, Piezo alarm connectors and a heavy-duty 10 amp relay circuit which can be used to control an alarm, valves, pump, etc. Available options include 4-20 milliamp output, 3 sensor input, 3 range capability and temperature. Internal electronic sensor substitutes are standard on all Monitor/controllers.

Sensors are available constructed in either 316 stainless steel or titanium. All sensors are provided with a 3/4″ MNPT polypropylene bushing and 10 ft./3 meters of cable. Optional PVDF or stainless steel bushings can be ordered, as well as longer cable lengths up to 100 ft./30 meters.

For details  and recommendations, please refer to Myron L data sheets, visit our website (www.myronlmeters.com), or contact us by email (myronlmeters@gmail.com).

 

 

 

Categories : Technical Tips

Deionized water

Posted by 9 Aug, 2012

Tweet     Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes –   even the final rinse  at the local car wash. THE DEIONIZATION PROCESS Most dissolved impurities in modern water supplies are ions like calcium, sodium, chlorides, […]

 

 

Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes –   even the final rinse  at the local car wash.

THE DEIONIZATION PROCESS

Most dissolved impurities in modern water supplies are ions like calcium, sodium, chlorides, etc. The deionization process removes ions from water via ion exchange. Positively charged ions (cations) and negatively charged ions (anions) are exchanged for hydrogen (H+) and hydroxyl (OH-) ions,  respectively, due  to the  resin’s greater affinity for other ions. The ion exchange process occurs on the binding sites of the resin beads. Once depleted of exchange capacity, the resin bed is regenerated with concentrated acid and caustic which strips away accumulated ions through physical displacement, leaving hydrogen or hydroxyl ions in their place.

DEIONIZER TYPES

Deionizers exist in four basic forms: disposable cartridges, portable exchange tanks, automatic units, and continuous units. A two-bed system employs separate cation and anion resin beds. Mixed-bed deionizers utilize both resins in the same vessel. The highest quality water is produced by mixed-bed deionizers, while two-bed deionizers have a larger capacity. Continuous deionizers, mainly used in labs for polishing, do not require regeneration.

TESTING Dl WATER QUALITY

Water quality from deionizers varies with the type of resins used, feed  water  quality,  flow, efficiency  of regeneration, remaining capacity, etc. Because of these variables, it is critical in many Dl water applications to know the precise quality. Resistivity/ conductivity is the most convenient method for testing Dl water quality. Deionized pure water is a poor electrical conductor, having a resistivity of 18.2 million ohm-cm (18.2 megohm) and conductivity of 0.055 microsiemens. It is the amount of ionized substances (or salts) dissolved in the water which determines water’s ability to conduct electricity. Therefore, resistivity and its inverse, conductivity, are good general purpose quality parameters.

Because temperature dramatically affects the conductivity of water, conductivity measurements are internationally referenced to 25°C to allow for comparisons of different samples. With typical water supplies, temperature changes the conductivity an average of 2%/°C, which is relatively easy to compensate. Deionized water, however, is much more challenging to accurately measure since temperature effects can approach 10%/°C!  Accurate automatic temperature compensation, therefore, is the heart of any respectable instrument.

 RECOMMENDED INSTRUMENTATION

Portable instruments are typically used to measure Dl water quality at points of use, pinpoint problems in a Dl system confirm monitor readings, and test the feed water to the system. The handheld Myron L meters have been the  first choice of Dl water professionals for many years. For two-bed Dl systems, there are several usable models with displays in either microsiemens or ppm (parts per million) of total dissolved solids. The most versatile instruments for Dl water is the Ultrameter II 4P or Ultrameter II 6PFCE , which can measure both ultrapure mixed-bed quality water and unpurified water. It should be noted that once Dl water leaves the piping, its resistivity will drop because the water absorbs dissolved carbon dioxide from the air.  Measuring of ultrapure water with a hand-held instrument requires not only the right instrument, but the right technique to obtain accurate, repeatable readings. Myron L meters offer the accuracy and precision necessary for ultrapure water measurements.

In-line Monitor/controllers are generally used in the more demanding Dl water applications. Increased accuracy is realized since the degrading effect of carbon dioxide on high purity water is avoided by use of an in-line sensor (cell). This same degradation of ultrapure water is the reason there are no resistivity calibration standard solutions (as with conductivity instruments). Electronic sensor substitutes are normally used to calibrate resistivity Monitor/controllers.

Myron L Meters carries a variety of in-line instruments, including resistivity Monitor/controllers which are designed specifically for Dl water. Seven resistivity  ranges are  available to suit any Dl water application: 0-20 megohm, 0-10 megohm,

0-5 megohm,  0-2 megohm,  0-1 megohm,  0-500 kilohm, and 0-200 kilohm. Temperature compensation is automatic and achieved via a dual thermistor circuit. Monitor/controller models contain an internal adjustable set point, Piezo alarm connectors and a heavy-duty 10 amp relay circuit which can be used to control an alarm, valves, pump, etc. Available options include 4-20 milliamp output, 3 sensor input, 3 range capability and temperature.  Internal electronic sensor substitutes are standard on all Monitor/controllers.

 

Categories : Application Advice, Science and Industry Updates, Technical Tips

Easy steps to troubleshoot RO and DI water systems

Posted by 12 Mar, 2011

Tweet   How much downtime can you afford?   If you are managing an inline water filtration system such as a reverse osmosis system (RO) or a Deionized water system (DI), then you probably have instrumentation installed in order to monitor the water quality. You rely on the instruments to give accurate and reliable readings, […]

 

Qr-logo

How much downtime can you afford?

 

If you are managing an inline water filtration system such as a reverse osmosis system (RO) or a Deionized water system (DI), then you probably have instrumentation installed in order to monitor the water quality. You rely on the instruments to give accurate and reliable readings, but what happens when the water quality measurements suddenly change? If, For example, the conductivity or TDS numbers are substantially higher or the resistivity reading drops to a low number over night.

 

There are a few things you can do to validate your filtration system and pinpoint the issue. Some RO and DI water systems have sample valves or ports after each filter, so you can draw a water sample and test it. If your water system is set up this way, lucky you! If not, you should consider installing a sample valve or port after each filter in order to test the water quality and performance of the filters.

 

If your water quality measurements suddenly change, the first thing you can do is use a reliable and accurate handheld instrument to test the water quality and compare the readings to your inline instrumentation. Conductivity or TDS measurements are a good indicator of changes in water quality Resistivity measurements are good for DI water systems. Draw a sample of water from your system as close as possible to the location of your inline sensor or probe. If the measurements from your handheld and your inline monitor match then you can begin to troubleshoot your RO or DI water system. If the readings don’t match, you need to troubleshoot your inline monitor to resolve the issue. Contact the supplier of your inline monitor and explain to them that you have verified the water quality of your system with an independent handheld instrument. From there you can diagnose the problem with the inline monitor.

 

Troubleshoot your RO and DI water filtration systems

 

To pinpoint the problem, test at various points throughout your water system. Take conductivity/TDS measurements and record the readings in a data log to identify trends in your water quality. This can help you to evaluate filter and system performance in the future. If you already have these readings, then troubleshooting should be quick and easy.You may be reading this right now because you need to troubleshoot and are not exactly sure where to begin or you don’t have measurement records. In that case, you’ll need to begin sampling the water to identify the issue with the water quality.

 

If you have previously recorded measurements logged…

 

Sample the water before and after each filter, compare the conductivity/TDS measurements to your previous measurements and see if there is a big difference. If so, you may have identified the problem. Continue to do this until you have checked each filter. Replace the ones that are out of performance specification.

 

If you DO NOT have previous recorded measurements logged…

 

Sample the water before and after each filter. Check with the filter manufacturer about the performance specification for each filter. They should be able to tell you the rejection rate, throughput, etc. From there you can determine if the filter is performing to spec based on the before/after measurements. Once you have identified which filter(s) is out of spec, you can begin replacing or changing them.

 

if you do not have a handheld instrument to validate your RO or DI water system, we recommend the Ultrameter II 6P. If you don’t need to test pH or ORP, then get the Ultrameter II 4P. These meters have been used to validate various water systems worldwide,  and are renowned for their accuracy, reliability, and ease of use.

You can check out the Ultrameter II here and save 10% if you order online: http://www.myronlmeters.com/category-s/55.htm

 

More information available at MyronLMeters.com

 

Tags: MyronLMeters.com, Myron L, Ultrameter, Myron L Ultrameter, reverse osmosis, deionized water, RO, DI, water filtration, filtration sytems, water systems 

Categories : Application Advice, Technical Tips

MyronLMeters.com Announces the Myron L Ultrapen PT1

Posted by 28 Feb, 2011

TweetMyronLMeters.com today announced the imminent release of a new Myron L product, the Myron L Ultrapen PT1, a reliable, easy-to-use pen-style meter that measures 3 parameters – conductivity, TDS, and salinity. FOR IMMEDIATE RELEASE San Diego, California, United States of America(Free-Press-Release.com) February 27, 2011 – MyronLMeters.com today announced the arrival of a new Myron L product, the […]

MyronLMeters.com today announced the imminent release of a new Myron L product, the Myron L Ultrapen PT1, a reliable, easy-to-use pen-style meter that measures 3 parameters – conductivity, TDS, and salinity.

FOR IMMEDIATE RELEASE

San DiegoCaliforniaUnited States of America(Free-Press-Release.com) February 27, 2011 –


MyronLMeters.com today announced the arrival of a new Myron L product, the Myron L Ultrapen PT1, a reliable, easy-to-use pen-style meter that measures 3 parameters – conductivity, TDS, and salinity.

“The Myron L Ultrapen PT1 will be available soon

Myron L Ultrapen Conductivity TDS Salinity Meter

Myron L Ultrapen Conductivity TDS Salinity Meter

at MyronLMeters.com,” said James Rutan, president, “and it’s going to be a great seller. The Pocket Tester’s convenience, durability, accuracy, and reliability are unmatched in the industry. It comes complete with a battery installed (and an extra), holster, lanyard, scoop, and instructions. The Myron L PT1 is waterproof, has fully secured circuitry and, as always, MyronLMeters.com has made it easy to order. At MyronLMeters.com, you get a 10% discount…just for ordering online. In addition, all Myron L meters in stock will ship the next business day. The quality of the Ultrapen PT1 and the company’s great reputation for reliable meters is sure to make this a big hit. It even looks great!”

Myron L meters are renowned for their accuracy, reliability, and ease of use, and have applications in automatic rinse tank controls, boiler and cooling towers, circuit board cleanliness testing, deionized water, environmental applications, fountain solutions, dialysis, horticulture, hydroponics, ORP (oxidation reduction potential)/Redox, pool and spa, reverse osmosis, textiles.

MyronLMeters.com has a well-established a web presence on Facebook, Gravatar, Twitter, Squidoo, LinkedIn, and WordPress. MyronLMeters.com encourages customers to join them on these sites for special offers and discounts.

More at http://www.myronlmeters.com


Categories : Product Updates

MyronLMeters.com Announces the Arrival of the Myron L Ultrameter III 9P

Posted by 17 Feb, 2011

MyronLMeters.com today announced the arrival of a new Myron L product, the Myron L Ultrameter III, a reliable, easy-to-use meter that measures 9 parameters – conductivity, resistivity, TDS, alkalinity, hardness, saturation index, ORP/free chlorine, pH and temperature.

Myron L Ultrameter III 9P

MyronLMeters.com today announced the arrival of a new Myron L product, the , Myron L Ultrameter III 9P , a reliable, easy-to-use meter that measures 9 parameters – conductivity, resistivity, TDS, alkalinity, hardness, saturation index, ORP/free chlorine, pH and temperature.

“The Ultrameter III is available right now at MyronLMeters.com,” said James Rutan, president. “We’ve made it easy to order, offer great training videos, technical bulletins, manuals, and a 10% discount…just for ordering online. In addition, all Myron L Meters in stock will ship the next business day. The quality of the Ultrameter III and the company’s great reputation for reliable meters is sure to make this a big hit. Don’t forget – this new Ultrameter has wireless data transfer capability when you buy the bluDock.  Expect about a 10 day lead time for a week or so.”

MyronLMeters.com carries the full line of Ultrameter III accessories, including the Ultrameter III 9PTK AHL Titration kit, soft protective case, replacement sensors, and the full line of standard solutions and buffers – all at a 10% discount when you order online.

Myron L meters are renowned for their accuracy, reliability, and ease of use, and have applications in automatic rinse tank controls, boiler and cooling towers, circuit board cleanliness testing, deionized water, environmental applications, fountain solutions, dialysis, horticulture, hydroponics, ORP (oxidation reduction potential)/Redox, pool and spa, reverse osmosis, textiles.

MyronLMeters.com has a well-established web presence on Facebook, Gravatar, Twitter, Squidoo, LinkedIn, and WordPress. MyronLMeters.com encourages customers to join them on these sites for special offers and discounts.

Tags: MyronLMeters.com, Myron L, Myron L meters, Ultrameter III, conductivity, resistivity, TDS, alkalinity, hardness, saturation index, ORP/free chlorine, pH and temperature, automatic rinse tank controls, boiler and cooling towers, circuit board cleanliness testing, deionized water, environmental applications, fountain solutions, dialysis, horticulture, hydroponics, ORP (oxidation reduction potential)/Redox, pool and spa, reverse osmosis, textiles

Categories : Product Updates