pH Calibration of the Ultrameter 6PFCE: MyronLMeters.com

Posted by 23 Mar, 2014

Tweet  *Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter. IMPORTANT: Always “zero” your Ultrameter II with a pH 7 buffer solution before adjusting the gain with acid or base buffers, i.e., 4 and/or 10, etc. a. pH Zero Calibration (6PFCE) 1. Rinse sensor well and cell cup 3 times with […]

 

*Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter.

IMPORTANT: Always “zero” your Ultrameter II with a pH 7 buffer solution

before adjusting the gain with acid or base buffers, i.e., 4 and/or 10, etc.

a. pH Zero Calibration (6PFCE)

1. Rinse sensor well and cell cup 3 times with 7 buffer solution.

2. Refill both sensor well and cell cup with 7 buffer solution.

3. Press

pH

 

 

 

 

to verify the pH calibration. If the display shows 7.00, skip the pH

Zero Calibration and proceed to pH Gain Calibration.

4. Press

CAL key

 

 

 

 

 

to enter calibration mode. “CAL”, “BUFFER” and “7” will appear on the display.

display

 

 

 

 

 

 

 

Displayed value will be the uncalibrated sensor.

NOTES: If a wrong buffer is added (outside of 6-8 pH),“7” and “BUFFER

will flash, and the Ultrameter II will not adjust.

The uncalibrated pH value displayed in step 4 will assist in determining

the accuracy of the pH sensor. If the pH reading is above 8 with pH 7

buffer solution, the sensor well needs additional rinsing or the pH sensor

is defective and needs to be replaced.

5. Press

Up

 

 

 

 

or

Down

 

 

 

 

until the display reads 7.00.

NOTE: Attempted calibration of >1 pH point from factory calibration will

cause “FAC” to appear. This indicates the need for sensor replacement

or fresh buffer solution. The “FAC” internal electronic calibration is not intended to

replace calibration with pH buffers. It assumes an ideal pH sensor. Each “FAC”

indicates a factory setting for that calibration step (i.e., 7, acid, base).

You may press

CAL key

 

 

 

 

 

to accept the preset factory value, or you may

reduce your variation from factory setting by pressing

Up

 

 

 

 

or

Down

 

 

 

 

6. Press to accept the new value. The pH Zero Calibration

is now complete. You may continue with pH Gain Calibration or

exit by pressing any measurement key.

b. pH Gain Calibration (6PFCE)

IMPORTANT: Always calibrate or verify your Ultrameter II with a pH 7

buffer solution before adjusting the gain with acid or base buffers, i.e.,

4 and/or 10, etc. Either acid or base solution can be used for the 2nd

point “Gain” calibration and then the opposite for the 3rd point. The

display will verify that a buffer is in the sensor well by displaying either

Acd” or “bAS”.

1. The pH calibration mode is initiated by either completion of the

pH Zero Calibration, or verifying 7 buffer and pressing the

CAL key

 

 

 

 

 

key twice while in pH measurement mode.

2. At this point the “CAL”, “BUFFER” and “Acd” or “bAS

will be displayed (see Figures 7 and 8).

Capture

 

NOTE: If the “Acd” and “bAS” indicators are blinking, it indicates

an error and needs either an acid or base solution present in the sensor

well.

3. Rinse sensor well 3 times with acid or base buffer solution.

4. Refill sensor well again with same buffer solution.

5. Press

Up

 

 

 

 

or

Down

 

 

 

 

until the display agrees with the buffer value.

6. Press

CAL key

 

 

 

 

 

to accept the 2nd point of calibration. Now the

display indicates the next type of buffer to be used.

Single point Gain Calibration is complete. You may continue for the 3rd

point of Calibration (2nd Gain) or exit by pressing any measurement key.

Exiting causes the value accepted for the buffer to be used for both acid

and base measurements.

To continue with 3rd point calibration, use basic buffer if acidic buffer

was used in the 2nd point, or vice-versa. Again, match the display to the

known buffer value as in step 2 and continue with the following steps:

7. Repeat steps 3 through 6 using opposite buffer solution.

8. Press

CAL key

 

 

 

 

 

to accept 3rd point of calibration, which completes the Calibration procedure.

Fill sensor well with Sensor Storage Solution and replace protective cap.

You can find technical advice and videos, the calibration solutions you need, and reliable Myron L meters
at MyronLMeters.com
Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Conductivity Calibration on the Ultrameter II 6PIIFCe: MyronLMeters.com

Posted by 23 Mar, 2014

Tweet  *Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter. a.  Fill and rinse the conductivity cell three times with a KCL standard solution. In this example, we’re using KCL-7000. b. Refill conductivity cell with same standard solution you rinsed with. c. Press         then press .   […]

 

*Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter.

a.  Fill and rinse the conductivity cell three times with a KCL standard solution. In this example, we’re using KCL-7000.

b. Refill conductivity cell with same standard solution you rinsed with.

c. Press

COND

 

 

 

 

then press

CAL key

.

 

 

 

The “CAL” icon will appear on the display.

display

 

 

 

 

 

 

 

 

 

 

 

d. Press

Up

 

 

 

or

Down

 

 

 

 

to step the displayed value toward the standard’s value.

In this example, we’re pressing

Down

 

 

 

 

to go down from 7032 to 7000. You can also hold a key down to scroll rapidly.

e. Press

CAL key

 

 

 

 

 

once to confirm the new value and end the calibration.

You can find technical advice and videos, the calibration solutions you need, and reliable Myron L meters
at MyronLMeters.com
Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

pH Sensor Technical Reference: MyronLMeters.com

Posted by 3 Sep, 2013

Tweet What is pH? Definition: pH is the negative logarithm of hydrogen ion activity in a solution. The Concentration ratio of hydrogen ions (H+) and hydroxyl ions (OH-) determine the pH value of a solution. Any hydrogen activity will produce a 59.16 mV/ pH unit across the glass membrane. The measurement is expressed on a […]

pH Sensor
What is pH?

Definition: pH is the negative logarithm of hydrogen ion activity in a solution.

The Concentration ratio of hydrogen ions (H+) and hydroxyl ions (OH-) determine the pH value of a solution. Any hydrogen activity will produce a 59.16 mV/ pH unit across the glass membrane. The measurement is expressed on a scale of 0.0 to 14.0. Water with a pH of 7 is considered neutral (H+ ions = 10-7 and OH-
ions =10-7). A solution is considered acidic when the hydrogen ions (H+) exceed the hydroxyl ions (OH-), and a solution is considered an alkaline (base) when the hydroxyl ions (OH-) exceed Hydrogen ions (H+).

How is pH measured?
A pH instrument consists of three main components, refer to Figure 1.

1. The pH measuring cell: Hydrogen sensitive glass is blown onto the end of an inert glass stem.
A silver wire, treated with silver chloride (Ag/AgCl) is sealed inside the glass (cell) with a solution of potassium chloride saturated with Silver chloride.

The measuring solution has a neutral pH level of 7 or 0 mV. A properly hydrated glass sensor will produce a “Gel Layer” on the inside and outside of the glass membrane. The “Gel Layer” enables hydrogen ions to develop an electrical potential
across the pH glass sensor; a millivolt signal varies with hydrogen ion activity on the glass membrane while submerged in the solution being tested.

1. The Reference cell: A silver wire treated with silver chloride (Ag/AgCl) is sealed inside an inert glass housing (cell) with a solution of potassium chloride saturated with silver chloride. The inert glass prevents hydrogen ion activity from test solutions to influence the reference cells constant millivolt signal. The combination of the reference electrode silver- silver chloride wire, and the saturated potassium chloride solution develops a constant 199-millivolt reference signal. The millivolt signal produced inside the reference electrode does not vary as long as the chloride concentration remains constant. The reference voltage is used as a baseline to compare variations or changes in the solution being tested. The reference cell is in contact with the test solution through a reference junction that is commonly made of porous Teflon®*‚ ceramic, or a wick type material called a Pelon strip. This junction completes the measuring circuit of the pH sensor.

2. Display meter: When the pH sensor is placed in a solution, the pH-measuring cell develops a millivolt signal that reflects the hydrogen ion activity of the test solution. A high impedance meter accurately measures the small millivolt changes and displays the results in pH units on either an analog meter or digital display.

Temperature considerations:
The pH glass membrane is sensitive to the temperatures of solutions being tested. Prolonged use and/or exposure to temperatures (above 35°C) will accelerate the aging, and increase chemical attack
to the glass membrane which will shorten the overall service life of the sensor.

ELEVATED TEMPERATURES WILL SHORTEN THE SERVICE LIFE OF A pH SENSOR.

Increase temperatures also decreases the impedance of the glass membrane. The decrease of the impedance affects the millivolt output of glass membrane.
Temperature changes close to neutral (pH 7) usually do not affect pH levels; however, when levels are
< pH 3 and > pH 11 a dramatic error may occur. This problem is resolved using a built in ATC (Automatic Temperature compensation) which uses a mathematical formula (Nernst equation) to correct pH errors due to temperature factors.

Other factors that affect the life of a sensor Because standard glass electrodes are manufactured using a silver/silver chloride electrode inserted into
a potassium chloride/silver chloride solution, the following list of solutions cause the reference solution to precipitate. If the following solutions are tested, it is recommended that the pH sensor well be thoroughly rinsed. The testing of these solutions will severely reduce the service life of the pH sensor.

1. Heavy metals – silver, iron, and lead
2. Proteins
3. Low ion solutions – distilled water
4. High sodium concentrates
5. Sulfides
6. Fluorides (In high concentrations or prolonged use)

Note: This is not a complete list of solutions that can cause the reference solution to precipitate.

Sodium ion error

As solutions approach, and exceed the pH level of 12.0 the high concentration of sodium ions interfere with the standard glass membrane and cause pH levels to be displayed lower than actual pH levels. If solutions being tested are normally high alkaline, (>12 pH) a probe manufactured with special glass may be required. The special glass may be used throughout the pH range of 0 to 14, but due to the high resistance nature of the glass it will significantly increase the overall time to analyze a sample. Constant use in solutions with pH levels higher than 12 will reduce the life of the probe.

Calibration

The break down of the pH sensor electrodes and the depletion, and/or saturation of the reference solution require your pH instrument to be re-calibrated. This should normally be performed twice a month, but depending on the actual use of the instrument it may be necessary to increase the intervals between calibrations.

Refer to your operations manual or to Myron L Meters video page for detailed instructions on your specific instrument calibration procedures. The calibration should be performed using at least two pH buffer standards. The initial calibration should use Myron L pH buffer solution 7. This will check and allow the instrument to be adjusted so its output reflects 0 millivolts, neutral, or pH 7. A second calibration using a standard solution that reflects the normal range of solutions being analyzed. If acidic solutions are normally tested, a pH buffer solution 4 should be used. If solutions to be tested are normally alkaline, a pH buffer solution 10 should be used. It is not necessary to calibrate your instrument over three standards (4, 7, and 10) unless during normal daily use of the instrument, the solutions being tested varies from low to high pH ranges. In
this case an increase of calibration intervals is also recommended.

How to maximize the life of your pH or pH/ORP sensor

Myron L uses a general-purpose glass pH sensor. This glass sensor may be used in most applications. To ensure maximum life of your Myron L pH test instruments, the following information should be considered whether you are a distributor or an end user. Most premature pH sensor failures can be prevented with a few maintenance procedures. The following procedures should be performed after using your Myron L meter, or if you plan to store your meter for an extended period of time.

1. The pH sensor well (fig 1) must be filled with
Myron L storage solution (preferred) or Myron L pH buffer 4, or tap water with table salt added and its protective cap (with foam insert) firmly installed.
Failure to do so will:
• Allow the glass membrane to dry out. A de- hydrated glass membrane will not produce the necessary “Gel layer” on the sensor surface, which is essential to allow the exchange of hydrogen ions (measure pH).
• Allow airborne contaminants to settle on the glass membrane surface. Once contaminants dry onto the surface of the glass membrane, it will inhibit the transfer of hydrogen ions. (See factory approved cleaning process below.)
• Allow the reference junction to dry out. The reference junction material is usually a wick or fiber type material that completes the electrical circuit between the reference electrode cell
and the solution being tested. Dehydration causes the reference solution to leach out of the electrode cavity, and form crystals in the junction. This is normally referred to as the “Bridging effect”.
Repeated dehydration of the pH or pH/ORP sensor will cause the instrument to have a slower response time, and be more difficult to calibrate. Dehydration will
significantly reduce the normal service life of the sensor.

2. Store spare pH or pH/ORP sensors in a refrigerator. “Do not Freeze”. Take proper precautions not to allow the temperature to fall below freezing. This
will cause the solution to expand and may damage the electrodes inside the sensor. Storage in a refrigerated environment will slow the evaporation of the storage solution, but not prevent evaporation. Always inspect and replace storage solution in spare sensor well on a regular basis.
Note: When using the Myron L storage solution, it is common for white crystal formations to form around the seal of the pH sensor well and protective cap; this is a normal occurrence as the solution evaporates. Never store the sensor in high purity water (distilled or de-ionized).
Approved factory cleaning process

Figure 1

Failure to do so will:
• Allow the glass membrane to dry out. A de- hydrated glass membrane will not produce the necessary “Gel layer” on the sensor surface, which is essential to allow the exchange of hydrogen ions (measure pH).
• Allow airborne contaminants to settle on the glass membrane surface. Once contaminants dry onto the surface of the glass membrane, it will inhibit the transfer of hydrogen ions. (See factory approved cleaning process below.)
• Allow the reference junction to dry out. The reference junction material is usually a wick or fiber type material that completes the electrical circuit between the reference electrode cell
and the solution being tested. Dehydration causes the reference solution to leach out of the electrode cavity, and form crystals in the junction. This is normally referred to as the “Bridging effect”.
Repeated dehydration of the pH or pH/ORP sensor will cause the instrument to have a slower response time, and be more difficult to calibrate. Dehydration will
significantly reduce the normal service life of the sensor.

2. Store spare pH or pH/ORP sensors in a refrigerator. “Do not Freeze”. Take proper precautions not to allow the temperature to fall below freezing. This
will cause the solution to expand and may damage the electrodes inside the sensor. Storage in a refrigerated environment will slow the evaporation of the storage solution, but not prevent evaporation. Always inspect and replace storage solution in spare sensor well on a regular basis.
Note: When using the Myron L storage solution, it is common for white crystal formations to form around the seal of the pH sensor well and protective cap; this is a normal occurrence as the solution evaporates. Never store the sensor in high purity water (distilled or de-ionized).

Approved factory cleaning process for the pH sensor
During normal use of your Myron L handheld pH or pH/ORP meter, you’ll have to clean your pH sensor bulb. The cleaning is necessary because of deposits left on the sensor from the test samples.
If you suspect your instrument is inaccurate, or the display value drifts, or the response is slow and sluggish, try the following.
Rinse the sensor well (three times) and fill with pH buffer 4 solution. If the pH continues to drift below the pH 4 level (i.e. 3, 2, or 1) repeat the test using pH buffer 10. If the pH level drifts beyond the pH level of 10 (i.e. 11, 12 etc.) follow the cleaning procedure outlined below.
If the pH levels of the buffer solutions 4 and 10 actually drift towards pH 7, this could mean that the pH sensor is damaged and needs to be replaced.

Caution: Wear proper eye protection and gloves during the cleaning procedure.

The following procedures may help clean and recover the pH or pH/ORP sensors.

NOTE: Not all pH or pH/ORP sensors can be recovered.
1. Fill the pH/ORP sensor well with 100% Isopropyl alcohol. If not available use additive- free rubbing alcohol (70%). This will remove any oils.
2. Allow the sensor to soak for 10 minutes.
3. Rinse with RO or DI water.
4. Rinse the sensor well (three times) and fill
with Myron L storage solution or Myron L pH buffer 4. Replace the protective cap and allow the sensor to recover overnight.
5. Re-calibrate the instrument according to the Myron L instruction manual that was provided with your instrument. If the instrument fails to calibrate properly, continue to the next step.

If the above procedure does not recover the pH sensor function, perform the following:
1. Fill the pH or pH/ORP sensor well with a hot salt solution 60°C (140°F) potassium chloride (KCI preferred) or hot tap water with table salt (NaCl). Allow the solution to cool.
2. Re-calibrate the instrument according to the Myron L instruction manual that was provided with your instrument. If the instrument fails to calibrate properly, the pH or pH/ORP sensor must be replaced.

Warranty
The manufacturer warrants the pH and pH/ORP sensor assemblies against manufacturer defects. Shelf life for most pH and ORP sensors is 12 months. Failure to maintain proper hydration of the glass pH sensors or the use of the instrument in any manner not described in the operation manual supplied with the instrument may shorten the life of the sensor.
*CAUTION: If you do not use your Myron L instrument on a regular basis or if you are a stocking distributor, the storage solution in the pH or pH/ORP sensor well will evaporate over time and must be replenished. To prevent premature pH glass sensor failure, the manufacturer suggests a preventative maintenance program. Failure to do so could void the factory warranty. The use of liquids containing high levels of solvents, such as acetone, xylene, and chlorinated hydrocarbons, or other harsh chemicals in your Myron L meter is not recommended. Doing so may damage the sensor.

Categories : Care and Maintenance, Technical Tips

Calibrating the Myron L Ultrapen PT1 – MyronLMeters.com

Posted by 6 Nov, 2012

TweetThe PT1 is designed to be very reliable and requires only infrequent calibration. Myron L Meters recommends calibrating each measurement mode you use once monthly. However, you should check the calibration whenever measurements are not as expected. The PT1 is programmed for 2 calibration options: Wet Calibration or Factory Calibration. Wet calibration is most accurate. […]

Myron L Ultrapen PT1

Myron L Ultrapen PT1 – conductivity, TDS, salinity pen

The PT1 is designed to be very reliable and requires only infrequent calibration. Myron L Meters recommends calibrating each measurement mode you use once monthly. However, you should check the calibration whenever measurements are not as expected. The PT1 is programmed for 2 calibration options: Wet Calibration or Factory Calibration. Wet calibration is most accurate. But if a high quality standard KCl-1800 µS or 442-3000 ppm solution is not available, the PT1 can be returned to factory settings.

Wet Calibration
Use calibration solution specified for measurement mode: Use KCL- 1800 for Cond KCl; Use 442-3000 for tdS 442, SALt 442, tdS NaCl, and SALt NaCl. See Specifications table for 442 solution ppm NaCl equivalent value. Calibrating TDS simultaneously calibrates SALt for the same value and vice versa.
1. Pour calibration solution into a clean container.
2. Rinse the pen 3 times by submerging the cell in fresh calibration solution and swirling it around.
3. Remove pen from solution, then fill the container one more time.
4. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode. Ensure the PT1 is in the correct solution mode.
5. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “CAL” displays.
6. Grasp the pen by its case with your fingers positioned between the
display and the pen cap to avoid sample contamination.
7. While the LED flashes rapidly, dip the pen in calibration solution so that the cell is completely submerged. If you do not submerge the cell in solution before the flashing slows, allow the pen to power off and start over.
8. While the LED flashes slowly, swirl the pen around to remove bubbles, keeping the cell submerged. Keep pen at least 1 inch (2½ cm) away from sides/bottom of container.
9. When the LED light stays on solid, remove the pen from the solution. “CAL SAVED” will display indicating a successful calibration.
Note: If an incorrect solution is used or the measurement is NOT within calibration limits for any other reason, “Error” displays alternately with “CLEAn CEL/CHEC SOL”. Check to make sure you are using the correct calibration solution. If the solution is correct, clean the cell by submerging the cell in a 1:1 solution of Lime-A-Way® and water for 5 minutes. Rinse the cell and start over.
10. Small bubbles trapped in the cell can give a false calibration. Measure the calibration solution again to verify correct calibration. If the reading is not within ±1% of the calibration solution value, repeat calibration.

Factory Calibration
If you do not have the proper calibration solution or wish to restore the pen to its original factory settings for any other reason, use the FAC CAL function to calibrate the PT1.
1. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode.
2. Immediately push and hold the push button. The display will scroll
through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release
the button when “FAC CAL” displays.
3. While the display scrolls through “PUSHnHLD” and “FAC CAL”, push and hold the push button until the display scrolls through “SAVEd” and “FAC CAL”, indicating the pen has been reset to its factory calibration.
4. Allow the pen to time out to turn power off.

STANDARD SOLUTIONS FOR CALIBRATION:
The ULTRAPEN™ PT1 uses the following solutions for wet calibration. Order MODEL#s: KCL-1800, 442-3000 (2027 ppm NaCl)

Categories : Uncategorized