Expert Manages Storm Water Discharge in Active Construction Sites With Ultrameter II 6P: MyronLMeters.com

Posted by 7 Jul, 2014

Tweet Mike Alberson, an expert in storm water pollution prevention, uses the Myron L Ultrameter II 6P to meet new and existing state and federal requirements for storm water monitoring. He checks for the presence of pollutants by testing the levels of total dissolved solids (TDS) and conductivity. He also tests storm water pH levels […]

tumblr_mrw572B3Q81qgr3lpo4_250

Mike Alberson, an expert in storm water pollution prevention, uses the Myron L Ultrameter II 6P to meet new and existing state and federal requirements for storm water monitoring. He checks for the presence of pollutants by testing the levels of total dissolved solids (TDS) and conductivity. He also tests storm water pH levels in accordance with NPDES guidelines implemented in California in 2010 that mandate pH testing for all Risk Level 2 and 3 sites.

Though TDS and conductivity do not indicate the presence of any specific contaminant, monitoring these parameters is a good way to determine an increase in the concentration of dissolved chemical constituents generally. High conductivity or TDS levels are a red flag to Alberson to investigate potential sources of pollution.

Chemicals used in landscaping, such as herbicides, pesticides and fertilizers, as well as materials such as cement, can all potentially dissolve into storm water runoff. Additionally, acidic or basic pollutants impact the quality of water by altering the pH of the runoff. Monitoring is required because altering the pH alters the types and amounts of all chemical constituents in runoff and, thereby, its toxicity. Changes in pH also impact the ecosystem directly when they exceed the narrow range required by biota to live in the receiving waters. The new California NPDES requirements have set a pH range limit of 6.5 to 8.5 pH Units

The State Water Quality Board’s overall goal in implementing increased monitoring and reporting requirements is to evaluate the effectiveness of Best Management Practices (BMPs) on effluent pollution and the impact that construction activities have on receiving waters. Developers and inspectors like Alberson are continually challenged with preventing potential pollutants from leaving the project sites, and when that happens, they need to remediate any adverse affects on the environment.

As a prerequisite to construction, the Developer of Plan must generate and gain approval of BMPs and Storm Water Pollution Prevention Plans (SWPPPs) which take into account the nature of the project’s building schedule, phasing of the project, building materials, the projected rainfall, the percentage of impervious cover on the project and the impact that potential storm water runoff could have on receiving waters.  The plans must also address the required monitoring and critical indicators of specific pollutants projected to discharge from the project site.

The site storm water inspector has to ensure that the necessary BMPs are implemented throughout the length of the project, as defined by the project SWPPP plan, which addresses project-specific site conditions and risk level determinations.  Alberson uses the meter frequently on Barnhart Balfour Beatty projects as most fall into a category of Risk Level 2, which now requires pH monitoring along during a rain event of 0.5 in. or more.

New California requirements have required all SWPPP developers and inspectors to be certified by the state since Sept. 2, 2011 via a special course given by designated State Trainers of Record (TOR). Alberson is designated as a TOR and offers California’s new Qualified SWPPP Practitioner and Qualified SWPPP Developers courses.

As a trainer, Alberson passes on knowledge gained from his own experience. Through the years, he has seen inspectors send water samples off to laboratories for analysis, the results of which would not be known for up to two weeks. In addition, the pH of these samples would change in the time it took to get the samples to the labs for analysis. Alberson now trains developers and inspectors to use the Myron L Ultrameter II to immediately measure pH, thereby ensuring storm water runoff on project sites is precisely monitored for potential pollutants in real time.

In his own work as an inspector, Alberson has used the Myron L Ultrameter II to respond to potential pollution issues as they arise. For example, at Barnhart Balfour Beatty’s Otay Ranch Village #6 Elementary School project in Otay Mesa, Calif., he developed a remediation solution that prevented environmental contamination from high pH runoff resulting from a required lime treatment of the campus soil. By performing onsite testing following a rain event, Alberson was able to determine the potential runoff had a pH level of 12.5.  He decided to immediately utilize a retention pond with carbon dioxide percolation control techniques. His remediation tactic worked using the meter to continuously monitor the pH until it was at a level acceptable for release into the receiving waters.

Categories : Case Studies & Application Stories

The Ultrameter II 6P: MyronLMeters.com

Posted by 12 Jun, 2013

Tweet Myron l Meters Ultrameter II 6p from Myron L Meters

Myron l Meters Ultrameter II 6p from Myron L Meters
Categories : Product Updates

Frequently Asked Questions – MyronLMeters.com

Posted by 28 Jan, 2013

TweetHow long will my Standard Solutions and Buffers last? The warranty on all standards and buffers is one year from the date it is manufactured (see the label on the bottle). If the standards and buffers become contaminated by the user pouring test samples back into the bottle or inserting the probe into the bottle […]

How long will my Standard Solutions and Buffers last?

The warranty on all standards and buffers is one year from the date it is manufactured (see the label on the bottle). If the standards and buffers become contaminated by the user pouring test samples back into the bottle or inserting the probe into the bottle the solution will not be accurate and should be discarded. The life of standards and buffers can exceed 1 year if the bottle is stored tightly capped and is not exposed to direct sunlight or freezing temperatures. If the solution becomes frozen, do not remove the cap – allow the standard or buffer solution to thaw completely and shake the bottle vigorously before opening.

How do I clean the conductivity cell cup on the handheld units?

With everyday sampling, the cell cup may build up a residue or film on the cell walls that may cause the readings to become erratic. Use a 50/50 mixture of a common household cleaner (i.e. Lime-A-Way, CLR, Tilex, etc) and DI water. Pour into conductivity cell cup and scrub with a q-tip. Be sure to get around all the electrodes and the thermistor probe. On the DS handheld unit, use an acid brush to scrub the cell cup. Let it set for about 10 minutes. Rinse the cell cup thoroughly with tap water, then a final rinse with DI water.

The display on my Ultrameter II 6P reads “Error 1″. What does that mean?

This is possibly caused by contamination to the circuit board. One or more of the traces on the PCB have been jumped/bridged and there is a contamination. Possible moisture, condensation, dirt, dried salts or other condensation inside is a potential cause for this display.

Where can I get an operations manual for my meter?

Go to MyronLMeters.com. Click on Manuals and Literature at the top of the page. Once on the Manuals and Literature page, you’ll find application bulletins, operations manuals, material safety data sheets, and product datasheets.  All are free, downloadable pdf files.

How do I pick the correct range module for my Monitor or Monitor/Controller?

Pick a range module that covers 2/3 of your operating range. If you pick a range module that is too broad, then your accuracy will suffer or it will not show a number on the display. For example, if your operating range is 100-150 microsiemens, a range module of 0-200 microsiemens (-115) would be a good choice. A range module of 0- 5,000 microsiemens (-123) would not be a good choice for this application

Got questions? Visit us at MyronLMeters.com and Ask An Expert.

 

 

 

 

Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Measuring Free Chlorine – MyronLMeters.com

Posted by 25 Nov, 2012

TweetChlorine Residuals The presence of free chlorine in drinking water indicates that: 1) a sufficient amount of chlorine was added to the water to inactivate most of the bacteria and viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during transport to the home, and during storage of water in the […]

Chlorine Residuals
The presence of free chlorine in drinking water indicates that: 1) a sufficient amount of chlorine was added to the water to inactivate most of the bacteria and viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during transport to the home, and during storage of water in the household. Because the presence of free residual chlorine in drinking water indicates the likely absence of disease-causing organisms, it is used as one measure of the potability of drinking water.

Adding Chlorine
When chlorine is added to water as a disinfectant, a series of reactions occurs. These reactions are graphically depicted later in this article. The first of these reactions occurs when organic materials and metals present in the water react with the chlorine and transform it into compounds that are unavailable for disinfection. The amount of chlorine used in these reactions is termed the chlorine demand of the water. Any remaining chlorine concentration after the chlorine demand is met is termed total chlorine. Total chlorine is further subdivided into: 1) the amount of chlorine that then reacts with nitrates present in the water and is transformed into compounds that are much less effective disinfectants than free chlorine (termed combined chlorine); and, 2) the free chlorine, which is the chlorine available to inactivate disease-causing organisms, and is thus a measure used to determine the potability of water.

For example, when chlorine is added to completely pure water the chlorine demand will be zero, and there will be no nitrates present, so no combined chlorine will be formed. Thus, the free chlorine concentration will be equal to the concentration of chlorine added. When chlorine is added to natural waters, especially water from surface sources such as rivers, organic material will exert a chlorine demand, and combined chlorine will be formed by reaction with nitrates. Thus, the free chlorine concentration will be less than the concentration of chlorine initially
added.

Chlorine Addition Flow Chart

Testing Free Chlorine in Drinking Water

Testing free chlorine is recommended in the following circumstances:
• To conduct dosage testing in project areas
• To monitor and evaluate projects by testing stored drinking water in households

The goal of dosage testing is to determine how much sodium hypochlorite solution to add to water that will be used for drinking to maintain free chlorine residual in the water for the average time of storage of water in the household (typically 24 hours). This goal differs from the goal of infrastructure-based (piped) water treatment systems, whose aim is effective disinfection at the endpoints (i.e., water taps) of the system. The WHO recommends “a residual concentration of free chlorine of greater than or equal to 0.5 mg/litre after at least 30 minutes contact time at pH less than 8.0.” This definition is only appropriate for users who obtain water directly from a flowing tap. A free chlorine level of 0.5 mg/L can maintain the quality of water through a distribution network, but is not optimal to maintain the quality of the water when it is stored in the home in a bucket or jerry can for 24 hours.

Recommendations:
1. At 1 hour after the addition of sodium hypochlorite solution to water there should be no more than 2.0 mg/L of free chlorine residual present (this ensures the water does not have an unpleasant taste or odor).
2. At 24 hours after the addition of sodium hypochlorite to water in containers that are used by families for water storage there should be a minimum of 0.2 mg/L of free chlorine residual present (this ensures microbiologically clean water).
This methodology is approved by the World Health Organization (WHO), and is graphically depicted below. The maximum allowable WHO value for free chlorine residual in drinking water is 5 mg/L. The minimum recommended WHO value for free chlorine residual in treated drinking water is 0.2 mg/L. CDC recommends not exceeding 2.0 mg/L due to taste concerns, and chlorine residual decays over time in stored water.

sample chlorine decay curve

1. Free Chlorine as an Indicator of Sanitizing Strength

Chlorine, which kills bacteria by way of its power as an oxidizing agent, is the most popular germicide used in water treatment. Chlorine is not only used as a primary disinfectant, but also to establish a sufficient residual level of Free Available Chlorine (FAC) for ongoing disinfection.

FAC is the chlorine that remains after a certain amount is consumed by killing bacteria or reacting with other organic (ammonia, fecal matter) or inorganic (metals, dissolved CO2, Carbonates, etc) chemicals in solution. Measuring the amount of residual free chlorine in treated water is a well accepted method for determining its effectiveness in microbial control.

The Myron L Company FCE method for measuring residual disinfecting power is based on ORP, the specific chemical attribute of chlorine (and other oxidizing germicides) that kills bacteria and microbes.

2. FCE Free Chlorine Unit

The 6PIIFCE is the first handheld device to detect free chlorine directly, by measuring ORP. The ORP value is converted to a concentration reading (ppm) using a conversion table developed by Myron L Company through a series of experiments that precisely controlled chlorine levels and excluded interferants.

Other test methods typically rely on the user visually or digitally interpreting a color change resulting from an added reagent-dye. The reagent used radically alters the sample’s pH and converts the various chlorine species present into a single, easily measured species. This ignores the effect of changing pH on free chlorine effectiveness and disregards the fact that some chlorine species are better or worse sanitizers than others.

The Myron L Company 6PIIFCE avoids these pitfalls. The chemistry of the test sample is left unchanged from the source water. It accounts for the effect of pH on chlorine effectiveness by including pH in its calculation. For these reasons, the Ultrameter II’s FCE feature provides the best reading-to-reading picture of the rise and fall in sanitizing effectivity of free available chlorine.

The 6PIIFCE also avoids a common undesirable characteristic of other ORP-based methods by including a unique Predictive ORP value in its FCE calculation. This feature, based on a proprietary model for ORP sensor behavior, calculates a final stabilized ORP value in 1 to 2 minutes rather than the 10 to 15 minutes or more that is typically required for an ORP measurement.

Categories : Application Advice, Science and Industry Updates