Recent Papers in Water Treatment for Small/Decentralized Systems –

Posted by 12 Jan, 2013

Recent Papers in Water Treatment for Small/Decentralized Systems

Content Table

Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries

Journal of Water and Health Vol 07 No 3 pp 497–506 © IWA Publishing 2009 doi:10.2166/wh.2009.071

Link to Summary Page

Nadine Kotlarz, Daniele Lantagne, Kelsey Preston and Kristen Jellison

Department of Civil and Environmental Engineering, Lehigh University, 13 East Packer Avenue, Bethlehem, PA 18015, USA
Enteric Diseases Epidemiology Branch, US Centers for Disease Control and Prevention, 1600 Clifton Road, MS-A38, Atlanta, GA 30333, USA Tel.:             +1 404 639 0231       Fax: +1 404 639 2205 E-mail:


Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.9 million deaths per year. The Safe Water System (SWS) is a proven household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l-1 sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of three locally available water clarification mechanisms—cloth filtration, settling/decanting and sand filtration—to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. All three mechanisms reduced turbidity (cloth filtration -1–60%, settling/decanting 78–88% and sand filtration 57–99%). Sand filtration (P=0.002) and settling/decanting (P=0.004), but not cloth filtration (P=0.30), were effective at reducing chlorine demand compared with controls. Recommendations for implementing organizations based on these results are discussed.

Appropriate wastewater treatment systems for developing countries: criteria and indictor assessment in Thailand

Water Science & Technology—WST Vol 59 No 9 pp 1873–1884 © IWA Publishing 2009 doi:10.2166/wst.2009.215

Link to Summary Page

W. Singhirunnusorn and M. K. Stenstrom

Faculty of Environment and Resource Studies, Mahasarakham University, Kantharawichai District, Maha Sarakham Province 44150, Thailand E-mail:
Department of Civil and Environmental Engineering, UCLA, Los Angeles CA 90095, USA E-mail:


This paper presents a comprehensive approach with factors to select appropriate wastewater treatment systems in developing countries in general and Thailand in particular. Instead of focusing merely on the technical dimensions, the study integrates the social, economic, and environmental concerns to develop a set of criteria and indicators (C&I) useful for evaluating appropriate system alternatives. The paper identifies seven elements crucial for technical selection: reliability, simplicity, efficiency, land requirement, affordability, social acceptability, and sustainability. Variables are organized into three hierarchical elements, namely: principles, criteria, and indicators. The study utilizes a mail survey to obtain information from Thai experts—academicians, practitioners, and government officials—to evaluate the C&I list. Responses were received from 33 experts on two multi-criteria analysis inquiries—ranking and rating—to obtain evaluative judgments. Results show that reliability, affordability, and efficiency are among the most important elements, followed by sustainability and social acceptability. Land requirement and simplicity are low in priority with relatively inferior weighting. A number of criteria are then developed to match the contextual environment of each particular condition. A total of 14 criteria are identified which comprised 64 indicators. Unimportant criteria and indicators are discarded after careful consideration, since some of the indicators are local or site specific.

A new paradigm for low-cost urban water supplies and sanitation in developing countries

Water Policy Vol 10 No 2 pp 119–129 © IWA Publishing 2008 doi:10.2166/wp.2008.034

Link to Summary Page

Duncan Maraa and Graham Alabasterb

aCorresponding author. School of Civil Engineering, University of Leeds, Leeds LS2 9JT UK. Fax: +44-113-343-2243 E-mail:
bUnited Nations Human Settlements Programme, PO Box 30300, Nairobi, Kenya


To achieve the Millennium Development Goals for urban water supply and sanitation ~300,000 and ~400,000 people will have to be provided with an adequate water supply and adequate sanitation, respectively, every day during 2001–2015. The provision of urban water supply and sanitation services for these numbers of people necessitates action not only on an unprecedented scale, but also in a radically new way as “more of the same” is unlikely to achieve these goals. A “new paradigm” is proposed for low-cost urban water supply and sanitation, as follows: water supply and sanitation provision in urban areas and large villages should be to groups of households, not to individual households. Groups of households would form (even be required to form, or pay more if they do not) water and sanitation cooperatives. There would be standpipe and yard-tap cooperatives served by community-managed sanitation blocks, on-site sanitation systems or condominial sewerage, depending on space availability and costs and, for non-poor households, in-house multiple-tap cooperatives served by condominial sewerage or, in low-density areas, by septic tanks with on-site effluent disposal. Very poor households (those unable to afford to form standpipe cooperatives) would be served by community-managed standpipes and sanitation blocks.

Faecal bacterial indicators removal in various wastewater treatment plants located in Almendares River watershed (Cuba)

Water Science & Technology—WST Vol 58 No 4 pp 773–779 © IWA Publishing 2008 doi:10.2166/wst.2008.440

Link to Summary Page

Tamara Garcia-Armisen, Josué Prats, Yociel Marrero and Pierre Servais

Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Brussels, Belgium *Present address: MINT, Vrije Universiteit Brussel, Building E, Pleinlaan 2, 1050, Brussels, Belgium Tel.:            +3226291918       E-mail:
Dpto. de Microbiología, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
Instituto Superior Politécnico José Antonio Echeverría, La Habana, Cuba


The Almendares River, located in Havana city, receives the wastewaters of more than 200,000 inhabitants. The high abundance of faecal bacterial indicators (FBIs) in the downstream stretch of the river reflects the very poor microbiological water quality. In this zone, the Almendares water is used for irrigation of urban agriculture and recreational activities although the microbiological standards for these uses are not met. Improvement of wastewater treatment is absolutely required to protect the population against health risk. This paper compares the removal of FBIs in three wastewater treatment plants (WWTPs) located in this watershed: a conventional facility using trickling filters, a constructed wetland (CW) and a solar aquatic system (SAS). The results indicate better removal efficiency in the two natural systems (CW and SAS) for all the measured parameters (suspended matters, biological oxygen demand, total coliforms, E. coli and enterococci). Removals of the FBIs were around two log units higher in both natural systems than in the conventional one. A longitudinal profile of the microbiological quality of the river illustrates the negative impact of the large conventional WWTP. This case study confirms the usefulness of small and natural WWTPs for tropical developing countries, even in urban and periurban areas.

Treatment of low and medium strength sewage in a lab-scale gradual concentric chambers (GCC) reactor

Water Science & Technology—WST Vol 57 No 8 pp 1155–1160 © IWA Publishing 2008 doi:10.2166/wst.2008.093

Link to Summary Page

L. Mendoza, M. Carballa, L. Zhang and W. Verstraete

Experimental Reproduction Centre (CEYSA), Agricultural Faculty, Technical University of Cotopaxi, Latacunga, Ecuador E-mail:
Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium E-mail:;;


One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165±24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26°C) and mesophilic (35°C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L·d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.

Use of modelling for optimization and upgrade of a tropical wastewater treatment plant in a developing country

Water Science & Technology Vol 56 No 7 pp 21–31 © IWA Publishing 2007 doi:10.2166/wst.2007.675

Link to Summary Page

D. Brdjanovic*, M. Mithaiwala** , M.S. Moussa*** , G. Amy* and M.C.M. van Loosdrecht**** 

*Department of Urban Water and Sanitation, UNESCO-IHE Institute for Water Education, Westvest 7, PO Box 3015, 2061 DA , Delft, The Netherlands (E-mail:
**Drainage Department, Surat Municipal Corporation, Muglisara, Surat , Gujarat, 395003, India (Email:
***Civil Engineering Department, Faculty of Engineering Mataria, Helwan , University, Egypt (Email:
****Department of Biochemical Engineering, Delft University of Technology, Julianalaan 67, 2628 BC , Delft, The Netherlands (Email:


This paper presents results of a novel application of coupling the Activated Sludge Model No. 3 (ASM3) and the Anaerobic Digestion Model No.1 (ADM1) to assess a tropical wastewater treatment plant in a developing country (Surat, India). In general, the coupled model was very capable of predicting current plant operation. The model proved to be a useful tool in investigating various scenarios for optimising treatment performance under present conditions and examination of upgrade options to meet stricter and upcoming effluent discharge criteria regarding N removal. It appears that use of plant-wide modelling of wastewater treatment plants is a promising approach towards addressing often complex interactions within the plant itself. It can also create an enabling environment for the implementations of the novel side processes for treatment of nutrient-rich, side-streams (reject water) from sludge treatment.

Ceramic silver-impregnated pot filters for household drinking water treatment in developing countries: material characterization and performance study

Water Science & Technology: Water Supply Vol 7 No 5-6 pp 9–17 © IWA Publishing 2007 doi:10.2166/ws.2007.142

Link to Summary Page

D. van Halem*, S.G.J. Heijman* , A.I.A. Soppe** , J.C. van Dijk* and G.L. Amy*** 

*Delft University of Technology, Stevinweg 1, 2628 CN , Delft, The Netherlands (E-mail:;
**Delft University of Technology & Kiwa Water Research, Groningenhaven 7, 3433 PE , Nieuwegein, The Netherlands (E-mail:
***Aqua for All Foundation, Groningenhaven 7, 3433 PE , Nieuwegein, The Netherlands (E-mail:
****UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX , Delft, The Netherlands (E-mail:


The ceramic silver-impregnated pot filter (CSF) is a low-cost drinking water treatment system currently produced in many factories worldwide. The objective of this study is to gather performance data to provide a scientific basis for organisations to safely scale-up and implement the CSF technology. Filters from three production locations are included in this study: Cambodia, Ghana and Nicaragua. The microstructure of the filter material was studied using mercury intrusion porosimetry and bubble-point tests. Effective pores were measured with a mean of 40 mm, which is larger than many pathogenic microorganisms. The removal efficiency of these microorganisms was measured by using indicator organisms; total coliforms naturally present in canal water, sulphite reducing Clostridium spores, E.coli K12 and MS2 bacteriophages. The removal of these organisms was monitored during a long-term study of several months in the laboratory. Ceramic silver impregnated pot filters successfully removed total coliforms and sulphite reducing Clostridium spores. High concentrations of Escherichia coli K12 were also removed, with log(10) reduction values consistently higher than 2. MS2 bacteriophages were only partially removed from the water, with significantly better results for filters without an impregnation of colloidal silver. During this study the main deficiency of the filter system proved to be the low water production; after 12 weeks of use all filter discharges were below 0.5 Lh-1, which is insufficient to provide drinking water for a family

Ceramic membranes for direct river water treatment applying coagulation and microfiltration

Water Science & Technology: Water Supply Vol 6 No 4 pp 89–98 © IWA Publishing 2006 doi:10.2166/ws.2006.906

Link to Summary Page

A. Loi-Brügger*, S. Panglisch*, P. Buchta*, K. Hattori**, H. Yonekawa**, Y. Tomita** and R. Gimbel*,***

*IWW Water Center, Moritzstr. 26, 45476 Mülheim, , Germany (E-mail:
**NGK Insulators Ltd., 2-56 Suda-cho, Nagoya, Aichi, , 467-8530, Japan (E-mail:
***Institut für Energie- und Umweltverfahrenstechnik, Universität Duisburg-Essen Bismarckstr. 90, 47057 Duisburg, , Germany (E-mail:


A new ceramic membrane has been designed by NGK Insulators Ltd., Japan, to compete in the drinking water treatment market. The IWW Water Centre, Germany, investigated the operational performance and economical feasibility of this ceramic membrane in a one year pilot study of direct river water treatment with the hybrid process of coagulation and microfiltration. The aim of this study was to investigate flux, recovery, and DOC retention performance and to determine optimum operating conditions of NGK’s ceramic membrane filtration system with special regards to economical aspects. Temporarily, the performance of the ceramic membrane was challenged under adverse conditions. During pilot plant operation river water with turbidities between 3 and 100 FNU was treated. Membrane flux was increased stepwise from 80–300 l/m2h resulting in recoveries between 95.9 and 98.9%. A DOC removal between about 20–35% was achieved. The pilot study and the subsequent economical evaluation showed the potential to provide a reliable and cost competitive process option for water treatment. The robustness of the ceramic membrane filtration process makes it attractive for a broad range of water treatment applications and, due to low maintenance requirements, also suitable for drinking water treatment in developing countries.

Related Publications

Public Private Partnerships in the Water Sector - Cledan Mandri-Perrott and David Stiggers
Publication Date: Mar 2013 – ISBN – 9781843393207

Designing Wastewater Systems According to Local Conditions - David M Robbins
Publication Date: Jan 2014 – ISBN – 9781780404769

Water Services Management and Governance - Tapio Katko, Petri S. Juuti, and Klaas Schwartz
Publication Date: Oct 2012 – ISBN – 9781780400228

Meeting the Challenge of Financing Water and Sanitation - Organisation for Economic Co-Operation and Development (OECD)
Publication Date: Nov 2011 – ISBN – 9781780400327

OECD Water Resources and Sanitation Set - Organisation for Economic Co-Operation and Development (OECD)
Publication Date: Nov 2011 – ISBN – 9781780400570

OECD Water Policy and Finance Set - Organisation for Economic Co-Operation and Development (OECD)
Publication Date: Nov 2011 – ISBN – 9781780400563 now ships to over 220 countries.


Categories : Case Studies & Application Stories, Science and Industry Updates
loading comments...