Measuring Free Chlorine –

Posted by 25 Nov, 2012

Chlorine Residuals
The presence of free chlorine in drinking water indicates that: 1) a sufficient amount of chlorine was added to the water to inactivate most of the bacteria and viruses that cause diarrheal disease; and, 2) the water is protected from recontamination during transport to the home, and during storage of water in the household. Because the presence of free residual chlorine in drinking water indicates the likely absence of disease-causing organisms, it is used as one measure of the potability of drinking water.

Adding Chlorine
When chlorine is added to water as a disinfectant, a series of reactions occurs. These reactions are graphically depicted later in this article. The first of these reactions occurs when organic materials and metals present in the water react with the chlorine and transform it into compounds that are unavailable for disinfection. The amount of chlorine used in these reactions is termed the chlorine demand of the water. Any remaining chlorine concentration after the chlorine demand is met is termed total chlorine. Total chlorine is further subdivided into: 1) the amount of chlorine that then reacts with nitrates present in the water and is transformed into compounds that are much less effective disinfectants than free chlorine (termed combined chlorine); and, 2) the free chlorine, which is the chlorine available to inactivate disease-causing organisms, and is thus a measure used to determine the potability of water.

For example, when chlorine is added to completely pure water the chlorine demand will be zero, and there will be no nitrates present, so no combined chlorine will be formed. Thus, the free chlorine concentration will be equal to the concentration of chlorine added. When chlorine is added to natural waters, especially water from surface sources such as rivers, organic material will exert a chlorine demand, and combined chlorine will be formed by reaction with nitrates. Thus, the free chlorine concentration will be less than the concentration of chlorine initially

Chlorine Addition Flow Chart

Testing Free Chlorine in Drinking Water

Testing free chlorine is recommended in the following circumstances:
• To conduct dosage testing in project areas
• To monitor and evaluate projects by testing stored drinking water in households

The goal of dosage testing is to determine how much sodium hypochlorite solution to add to water that will be used for drinking to maintain free chlorine residual in the water for the average time of storage of water in the household (typically 24 hours). This goal differs from the goal of infrastructure-based (piped) water treatment systems, whose aim is effective disinfection at the endpoints (i.e., water taps) of the system. The WHO recommends “a residual concentration of free chlorine of greater than or equal to 0.5 mg/litre after at least 30 minutes contact time at pH less than 8.0.” This definition is only appropriate for users who obtain water directly from a flowing tap. A free chlorine level of 0.5 mg/L can maintain the quality of water through a distribution network, but is not optimal to maintain the quality of the water when it is stored in the home in a bucket or jerry can for 24 hours.

1. At 1 hour after the addition of sodium hypochlorite solution to water there should be no more than 2.0 mg/L of free chlorine residual present (this ensures the water does not have an unpleasant taste or odor).
2. At 24 hours after the addition of sodium hypochlorite to water in containers that are used by families for water storage there should be a minimum of 0.2 mg/L of free chlorine residual present (this ensures microbiologically clean water).
This methodology is approved by the World Health Organization (WHO), and is graphically depicted below. The maximum allowable WHO value for free chlorine residual in drinking water is 5 mg/L. The minimum recommended WHO value for free chlorine residual in treated drinking water is 0.2 mg/L. CDC recommends not exceeding 2.0 mg/L due to taste concerns, and chlorine residual decays over time in stored water.

sample chlorine decay curve

1. Free Chlorine as an Indicator of Sanitizing Strength

Chlorine, which kills bacteria by way of its power as an oxidizing agent, is the most popular germicide used in water treatment. Chlorine is not only used as a primary disinfectant, but also to establish a sufficient residual level of Free Available Chlorine (FAC) for ongoing disinfection.

FAC is the chlorine that remains after a certain amount is consumed by killing bacteria or reacting with other organic (ammonia, fecal matter) or inorganic (metals, dissolved CO2, Carbonates, etc) chemicals in solution. Measuring the amount of residual free chlorine in treated water is a well accepted method for determining its effectiveness in microbial control.

The Myron L Company FCE method for measuring residual disinfecting power is based on ORP, the specific chemical attribute of chlorine (and other oxidizing germicides) that kills bacteria and microbes.

2. FCE Free Chlorine Unit

The 6PIIFCE is the first handheld device to detect free chlorine directly, by measuring ORP. The ORP value is converted to a concentration reading (ppm) using a conversion table developed by Myron L Company through a series of experiments that precisely controlled chlorine levels and excluded interferants.

Other test methods typically rely on the user visually or digitally interpreting a color change resulting from an added reagent-dye. The reagent used radically alters the sample’s pH and converts the various chlorine species present into a single, easily measured species. This ignores the effect of changing pH on free chlorine effectiveness and disregards the fact that some chlorine species are better or worse sanitizers than others.

The Myron L Company 6PIIFCE avoids these pitfalls. The chemistry of the test sample is left unchanged from the source water. It accounts for the effect of pH on chlorine effectiveness by including pH in its calculation. For these reasons, the Ultrameter II’s FCE feature provides the best reading-to-reading picture of the rise and fall in sanitizing effectivity of free available chlorine.

The 6PIIFCE also avoids a common undesirable characteristic of other ORP-based methods by including a unique Predictive ORP value in its FCE calculation. This feature, based on a proprietary model for ORP sensor behavior, calculates a final stabilized ORP value in 1 to 2 minutes rather than the 10 to 15 minutes or more that is typically required for an ORP measurement.

Categories : Application Advice, Science and Industry Updates
loading comments...