Desalination

Posted by 9 Dec, 2012

Desalination refers to processes that remove some amount of salt and other minerals from saline water.

Salt water is desalinated to produce fresh water suitable for human consumption or irrigation. One potential byproduct of desalination is salt. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on developing cost-effective ways of providing fresh water for human use. Along with recycled wastewater, this is one of the few rainfall-independent water sources.

Large-scale desalination typically uses large amounts of energy and specialized, expensive infrastructure, making it more expensive than fresh water from conventional sources, such as rivers or groundwater.

Desalination is particularly relevant to countries such as Australia, which traditionally have relied on collecting rainfall behind dams to provide their drinking water supplies.

According to the International Desalination Association, in 2009, 14,451 desalination plants operated worldwide, producing 59.9e6 cubic meters (2.12×109 cu ft) per day, a year-on-year increase of 12.3%. It was 68 million m3 in 2010, and expected to hit 120 million m3 by 2020; some 40 million m3 is planned for the Middle East. The world’s largest desalination plant is the Jebel Ali Desalination Plant (Phase 2) in the United Arab Emirates.

 

 

 

 

Schematic of a multistage flash desalinator

A – steam in

B – seawater in

C – potable water out

D – waste out

E – steam out

F – heat exchange

G – condensation collection

H – brine heater

 

 

 

 

 

 

 

Plan of a typical reverse osmosis desalination plant

The traditional process used in these operations is vacuum distillation—essentially the boiling of water at less than atmospheric pressure and thus a much lower temperature than normal. This is because the boiling of a liquid occurs when the vapor pressure equals the ambient pressure and vapor pressure increases with temperature. Thus, because of the reduced temperature, energy is saved. Multistage flash distillation, a leading method, accounted for 85% of production worldwide in 2004.

The principal competing processes use membranes to desalinate, principally applying reverse osmosis technology. Membrane processes use semipermeable membranes and pressure to separate salts from water. Reverse osmosis plant membrane systems typically use less energy than thermal distillation, which has led to a reduction in overall desalination costs over the past decade. Desalination remains energy intensive, however, and future costs will continue to depend on the price of both energy and desalination technology.

Cogeneration

Cogeneration is the process of using excess heat from power production to accomplish another task. For desalination, cogeneration is the production of potable water from seawater or brackish groundwater in an integrated, or “dual-purpose”, facility in which a power plant becomes the source of energy for desalination. Alternatively, the facility’s energy production may be dedicated to the production of potable water (a stand-alone facility), or excess energy may be produced and incorporated into the energy grid (a true cogeneration facility). Cogeneration takes various forms, and theoretically any form of energy production could be used. However, the majority of current and planned cogeneration desalination plants use either fossil fuels or nuclear power as their source of energy. Most plants are located in the Middle East or North Africa, which use their petroleum resources to offset limited water resources. The advantage of dual-purpose facilities is they can be more efficient in energy consumption, thus making desalination a more viable option for drinking water.

 

 

 

 

 

 

 

The Shevchenko BN350, a nuclear-heated desalination unit

In a December 26, 2007, opinion column in The Atlanta Journal-Constitution, Nolan Hertel, a professor of nuclear and radiological engineering at Georgia Tech, wrote, “… nuclear reactors can be used … to produce large amounts of potable water. The process is already in use in a number of places around the world, from India to Japan and Russia. Eight nuclear reactors coupled to desalination plants are operating in Japan alone … nuclear desalination plants could be a source of large amounts of potable water transported by pipelines hundreds of miles inland…”

Additionally, the current trend in dual-purpose facilities is hybrid configurations, in which the permeate from a reverse osmosis desalination component is mixed with distillate from thermal desalination. Basically, two or more desalination processes are combined along with power production. Such facilities have already been implemented in Saudi Arabia at Jeddah and Yanbu.

A typical aircraft carrier in the US military uses nuclear power to desalinate 400,000 US gallons (1,500,000 l; 330,000 imp gal) of water per day.

Economics

Factors that determine the costs for desalination include capacity and type of facility, location, feed water, labor, energy, financing, and concentrate disposal. Desalination stills now control pressure, temperature and brine concentrations to optimize efficiency. Nuclear-powered desalination might be economical on a large scale.

While noting costs are falling, and generally positive about the technology for affluent areas in proximity to oceans, a 2004 study argued, “Desalinated water may be a solution for some water-stress regions, but not for places that are poor, deep in the interior of a continent, or at high elevation. Unfortunately, that includes some of the places with biggest water problems.”, and, “Indeed, one needs to lift the water by 2,000 meters (6,600 ft), or transport it over more than 1,600 kilometers (990 mi) to get transport costs equal to the desalination costs. Thus, it may be more economical to transport fresh water from somewhere else than to desalinate it. In places far from the sea, like New Delhi, or in high places, like Mexico City, high transport costs would add to the high desalination costs. Desalinated water is also expensive in places that are both somewhat far from the sea and somewhat high, such as Riyadh and Harare. In many places, the dominant cost is desalination, not transport; the process would therefore be relatively less expensive in places like Beijing, Bangkok, Zaragoza, Phoenix, and, of course, coastal cities like Tripoli.”[15] After being desalinated at Jubail, Saudi Arabia, water is pumped 200 miles (320 km) inland through a pipeline to the capital city of Riyadh. For coastal cities, desalination is increasingly viewed as an untapped and unlimited water source.

In Israel as of 2005, desalinating water costs US$ 0.53 per cubic meter. As of 2006, Singapore was desalinating water for US$ 0.49 per cubic meter.[18] The city of Perth began operating a reverse osmosis seawater desalination plant in 2006, and the Western Australian government announced a second plant will be built to serve the city’s needs.[19] A desalination plant is now operating in Australia’s largest city, Sydney,[20] and the Wonthaggi desalination plant was under construction in Wonthaggi, Victoria.

The Perth desalination plant is powered partially by renewable energy from the Emu Downs Wind Farm. A wind farm at Bungendore in New South Wales was purpose-built to generate enough renewable energy to offset the Sydney plant’s energy use,[22] mitigating concerns about harmful greenhouse gas emissions, a common argument used against seawater desalination.

In December 2007, the South Australian government announced it would build a seawater desalination plant for the city of Adelaide, Australia, located at Port Stanvac. The desalination plant was to be funded by raising water rates to achieve full cost recovery. An online, unscientific poll showed nearly 60% of votes cast were in favor of raising water rates to pay for desalination.

A January 17, 2008, article in the Wall Street Journal stated, “In November, Connecticut-based Poseidon Resources Corp. won a key regulatory approval to build the $300 million water-desalination plant in Carlsbad, north of San Diego. The facility would produce 50,000,000 US gallons (190,000,000 l; 42,000,000 imp gal) of drinking water per day, enough to supply about 100,000 homes … Improved technology has cut the cost of desalination in half in the past decade, making it more competitive … Poseidon plans to sell the water for about $950 per acre-foot [1,200 cubic metres (42,000 cu ft)]. That compares with an average [of] $700 an acre-foot [1200 m³] that local agencies now pay for water.”  Each $1,000 per acre-foot works out to $3.06 for 1,000 gallons, or $.81 per cubic meter.

While this regulatory hurdle was met, Poseidon Resources is not able to break ground until the final approval of a mitigation project for the damage done to marine life through the intake pipe is received, as required by California law. Poseidon Resources has made progress in Carlsbad, despite an unsuccessful attempt to complete construction of Tampa Bay Desal, a desalination plant in Tampa Bay, FL, in 2001. The Board of Directors of Tampa Bay Water was forced to buy Tampa Bay Desal from Poseidon Resources in 2001 to prevent a third failure of the project. Tampa Bay Water faced five years of engineering problems and operation at 20% capacity to protect marine life, so stuck to reverse osmosis filters prior to fully using this facility in 2007.

In 2008, a San Leandro, California company (Energy Recovery Inc.) was desalinating water for $0.46 per cubic meter.

A Jordanian-born chemical engineering doctoral student at University of Ottawa, Mohammed Rasool Qtaisha, invented a new desalination technology that is alleged to produce between 600% and 700% more water output per square meter of membrane than current technology. General Electric is looking into similar technology, and the U.S. National Science Foundation funded the University of Michigan to study it, as well. Patent issues and details of the technology were unresolved as of 2008.

While desalinating 1,000 US gallons (3,800 l; 830 imp gal) of water can cost as much as $3, the same amount of bottled water costs $7,945.

Environmental

Intake

In the United States, due to a recent court ruling under the Clean Water Act, ocean water intakes are no longer viable without reducing mortality of the life in the ocean, the plankton, fish eggs and fish larvae, by 90%.[32] The alternatives include beach wells to eliminate this concern, but require more energy and higher costs, while limiting output.

Outflow

All desalination processes produce large quantities of a concentrate, which may be increased in temperature, and contain residues of pretreatment and cleaning chemicals, their reaction byproducts, and heavy metals due to corrosion. Chemical pretreatment and cleaning are a necessity in most desalination plants, which typically includes the treatment against biofouling, scaling, foaming and corrosion in thermal plants, and against biofouling, suspended solids and scale deposits in membrane plants.

To limit the environmental impact of returning the brine to the ocean, it can be diluted with another stream of water entering the ocean, such as the outfall of a wastewater treatment or power plant. While seawater power plant cooling water outfalls are not as fresh as wastewater treatment plant outfalls, salinity is reduced. If the power plant is medium-to-large sized and the desalination plant is not enormous, the power plant’s cooling water flow is likely to be at least several times larger than that of the desalination plant. Another method to reduce the increase in salinity is to mix the brine via a diffuser in a mixing zone. For example, once the pipeline containing the brine reaches the sea floor, it can split into many branches, each releasing brine gradually through small holes along its length. Mixing can be combined with power plant or wastewater plant dilution.

Brine is denser than seawater due to higher solute concentration. The ocean bottom is most at risk because the brine sinks and remains there long enough to damage the ecosystem. Careful reintroduction can minimize this problem. For example, for the desalination plant and ocean outlet structures to be built in Sydney from late 2007, the water authority stated the ocean outlets would be placed in locations at the seabed that will maximize the dispersal of the concentrated seawater, such that it will be indistinguishable beyond between 50 and 75 meters (160 and 246 ft) from the outlets. Typical oceanographic conditions off the coast allow for rapid dilution of the concentrated byproduct, thereby minimizing harm to the environment.

The Kwinana Desalination Plant opened in Perth in 2007. Water there and at Queensland’s Gold Coast Desalination Plant and Sydney’s Kurnell Desalination Plant is withdrawn at only 0.1 meters per second (0.33 ft/s), which is slow enough to let fish escape. The plant provides nearly 140,000 cubic meters (4,900,000 cu ft) of clean water per day.

Alternatives without pollution

Some methods of desalination, particularly in combination with evaporation ponds and solar stills (solar desalination), do not discharge brine. They do not use chemicals in their processes nor the burning of fossil fuels. They do not work with membranes or other critical parts, such as components that include heavy metals, thus do not cause toxic waste (and high maintenance). A new approach that works like a solar still, but on the scale of industrial evaporation ponds is the Integrated Biotectural System. It can be considered “full desalination” because it converts the entire amount of saltwater intake into distilled water. One of the unique advantages of this type of solar-powered desalination is the feasibility for inland operation. Standard advantages also include no air pollution from desalination power plants and no temperature increase of endangered natural water bodies from power plant cooling-water discharge. Another important advantage is the production of sea salt for industrial and other uses. Currently, 50% of the world’s sea salt production still relies on fossil energy sources.

Alternatives to desalination

Increased water conservation and efficiency remain the most cost-effective priorities in areas of the world where there is a large potential to improve the efficiency of water use practices. Wastewater reclamation for irrigation and industrial use provides multiple benefits over desalination. Urban runoff and storm water capture also provide benefits in treating, restoring and recharging groundwater.

A proposed alternative to desalination in the American Southwest is the commercial importation of bulk water from water-rich areas either by very large crude carriers converted to water carriers, or via pipelines. The idea is politically unpopular in Canada, where governments imposed trade barriers to bulk water exports as a result of a claim filed in 1999 under Chapter 11 of the North American Free Trade Agreement (NAFTA) by Sun Belt Water Inc., a company established in 1990 in Santa Barbara, California, to address pressing local needs due to a severe drought in that area.

Experimental techniques and other developments

Many desalination techniques have been researched, with varying degrees of success.

One such process was commercialized by Modern Water PLC using forward osmosis, with a number of plants reported to be in operation.

The US government is working to develop practical solar desalination.

The Passarell process uses reduced atmospheric pressure rather than heat to drive evaporative desalination. The pure water vapor generated by distillation is then compressed and condensed using an advanced compressor. The compression process improves distillation efficiency by creating the reduced pressure in the evaporation chamber. The compressor centrifuges the pure water vapor after it is drawn through a demister (removing residual impurities) causing it to compress against tubes in the collection chamber. The compression of the vapor causes its temperature to increase. The heat generated is transferred to the input water falling in the tubes, causing the water in the tubes to vaporize. Water vapor condenses on the outside of the tubes as product water. By combining several physical processes, Passarell enables most of the system’s energy to be recycled through its subprocesses, namely evaporation, demisting, vapor compression, condensation, and water movement within the system.[44]

Geothermal energy can drive desalination. In most locations, geothermal desalination beats using scarce groundwater or surface water, environmentally and economically.[citation needed]

Nanotube membranes may prove to be effective for water filtration and desalination processes that would require substantially less energy than reverse osmosis.

Biomimetic membranes are another approach.

On June 23, 2008, Siemens Water Technologies announced technology based on applying electric fields that purports to desalinate one cubic meter of water while using only 1.5 kWh of energy. If accurate, this process would consume only one-half the energy of other processes. Currently, Oasis Water, which developed the technology, still uses three times that much energy.

Freeze-thaw desalination uses freezing to remove fresh water from frozen seawater.

In 2009, Lux Research estimated the worldwide desalinated water supply will triple between 2008 and 2020.

Desalination through evaporation and condensation for crops

The Seawater Greenhouse uses natural evaporation and condensation processes inside a greenhouse powered by solar energy to grow crops in arid coastal land.

Low-temperature thermal desalination

Originally stemming from ocean thermal energy conversion research, low-temperature thermal desalination (LTTD) takes advantage of water boiling at low pressures, potentially even at ambient temperature. The system uses vacuum pumps to create a low-pressure, low-temperature environment in which water boils at a temperature gradient of 8–10 °C (46–50 °F) between two volumes of water. Cooling ocean water is supplied from depths of up to 600 meters (2,000 ft). This cold water is pumped through coils to condense the water vapor. The resulting condensate is purified water. LTTD may also take advantage of the temperature gradient available at power plants, where large quantities of warm wastewater are discharged from the plant, reducing the energy input needed to create a temperature gradient.

Experiments were conducted in the US and Japan to test the approach. In Japan, a spray-flash evaporation system was tested by Saga University. In Hawaii, the National Energy Laboratory tested an open-cycle OTEC plant with fresh water and power production using a temperature difference of 20 C° between surface water and water at a depth of around 500 meters (1,600 ft). LTTD was studied by India’s National Institute of Ocean Technology (NIOT) from 2004. Their first LTTD plant opened in 2005 at Kavaratti in the Lakshadweep islands. The plant’s capacity is 100,000 liters (22,000 imp gal; 26,000 US gal)/day, at a capital cost of INR 50 million (€922,000). The plant uses deep water at a temperature of 7 to 15 °C (45 to 59 °F). In 2007, NIOT opened an experimental, floating LTTD plant off the coast of Chennai, with a capacity of 1,000,000 litres (220,000 imp gal; 260,000 US gal)/day. A smaller plant was established in 2009 at the North Chennai Thermal Power Station to prove the LTTD application where power plant cooling water is available.

Thermoionic process

In October 2009, Saltworks Technologies, a Canadian firm, announced a process that uses solar or other thermal heat to drive an ionic current that removes all sodium and chlorine ions from the water using ion-exchange membranes.

Shared under the Creative Commons Attribution-ShareAlike License, original text and illustrations found here: http://en.wikipedia.org/wiki/Desalination

 

Categories : Science and Industry Updates
loading comments...