Search Results

750 Series Calibration Modules: MyronLMeters.com

Posted by 8 Mar, 2015
**For use with 750II Series Monitor/controllers** NIST traceable Calibration Modules are commonly used to verify and calibrate Resistivity Monitor/controllers. Normally they are not needed due to the “built-in” electronic calibration or “Full Scale Test”. However, your requirements may be such that a crosscheck or verifi cation is required.

If the proper Resistivity Sensor Substitute is not readily available and you can not wait for one to be delivered, one may be constructed using the equivalent resister values listed on the accompanying chart and schematic.

Comments Off Categories : Application Advice, Technical Tips

Myron L Meters Calibration Solutions and Buffers

Posted by 8 Mar, 2015

SSB-chart_1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All Myron L meters are factory calibrated with NIST traceable Standard Solutions having specific conductivity/ppm values. Myron L solutions are made under strictly controlled conditions using reagent grade salts. These salts are mixed with deionized water having a resistivity of at least 5 megohms-cm purity.

Myron L solutions have an accuracy of ±1% based on values published in the International Critical Tables and traceable to the National Institute of Standards and Technology.

Myron L conductivity Standard Solutions and pH Buffers listed below are used for factory calibration. Regular use of these solutions is recommended to ensure specified instrument accuracy. Frequency of conductivity recalibration depends upon use, but once every month should be sufficient for an instrument used daily. pH models, depending upon use, should be recalibrated with pH 7 Buffer every 1-2 weeks, and checked with pH 4 and/or 10 Buffers at similar intervals. pH Sensor Storage Solution is recommended for keeping the pH sensor wet. Myron L solutions are available in quart/1 ltr., gallon/3,8 ltr. and 2 oz./59 ml plastic bottles, ready to use.

Note: Refer to TDS/Conductivity Equivalents chart for actual calibration point values.

Note: RE-10 Range Extenders are usually calibrated with either 442-15,000 or 442- 30,000 Standard Solution.

Conductivity instruments are a convenient way to determine the parts per million of total dissolved solids (ppm/TDS) in boilers, cooling towers, reverse osmosis systems, etc. Although the International Unit (Sl) of measuring conductivity is the microsiemens/ cm (also known as micromhos/cm), a direct reading in ppm/TDS is sometimes preferred.
Myron L® conductivity instruments and monitor/ controllers are calibrated to read in ppm/442, ppm/ NaCI, or microsiemens. All three values are listed on our Standard Solutions. The relationship among these standards can be seen in the table and graphs that follow.

442 Natural Water™ Standard Solution is used in calibrating many Myron L® Instruments. It is the best choice when measuring boiler and cooling water samples, city water supply, lakes, wells, etc. “442” refers to the combination of salts mixed with deionized water to comprise this standard: 40% sodium sulfate, 40% sodium bicarbonate, 20% sodium chloride. A combination of standard salts is necessary since natural water salt type and concentration can vary greatly by location. After much research, the 442 Standard was developed by the Myron L® Company more than 40 years ago. It remains the world’s most accepted standard.

NaCl Standard Solution is offered to calibrate instruments that measure any sample that is predominately NaCI (sodium chloride), such as sea water, brackish water, etc. As can be seen in the graph at right, 1000 ppm of NaCI has a conductivity of 2000 micromhos. Note how this 1:2 relationship is continuously variable throughout the curve and decreases as ppm NaCI increases.

KCl Standard Solution is used to calibrate conductivity instruments that read directly in microsiemens (micromhos) or millisiemens (1000 microsiemens). KCI (potassium chloride) is a very stable salt and is an international calibration standard for conductivity measurement.

pH Buffer Solutions 4, 7 and 10 are mold inhibited and accurate to within + 0.01 pH units @ 25°C. Myron L Buffers are traceable to NIST certified pH references and are color-coded for instant identification.

You can find your Myron L solutions here: http://www.myronlmeters.com/Myron-L-Calibration-Solutions-s/45.htm

The table below shows the Conductivity/TDS Equivalents for various Myron L Standard Solutions.

SSB-chart_2

Comments Off Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Ultrapen PT4 Free Chlorine Pen Calibration: MyronLMeters.com

Posted by 4 Apr, 2014
how to calibrate free chlorine for the ultrapen pt4

how to calibrate free chlorine for the ultrapen pt4

IV. Calibration of the Ultrapen PT4 Free Chlorine Pen

The manufacturer recommends calibrating twice a month, depending on usage.

However, you should check the calibration whenever measurements are not as expected. For greatest accuracy, you should perform a 3-point wet pH calibration, and wet ORP calibration with the ORP Standard Solution closest in value to the solution you will be testing.

NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are using a proper Myron L Company pH Buffer or ORP Standard Solution. If the solution is correct, clean the sensor as described in Sensor Cleaning section on page 4 of the operations manual. Restart calibration.

NOTE: Small bubbles trapped in the sensor may give a false calibration. After calibration is completed, measure the pH Buffer or ORP Standard Solutions again in solution check mode “SOL ck” (see pages 3 and 4 of the operations manual) to verify correct calibration.

NOTE: If at any point during calibration, you do not submerge the sensor in solution before the flashing slows, allow the PT4 to power off and start over.
NOTE: You should always calibrate with pH 7 first.

A. Calibration preparation
For maximum accuracy, fill 2 clean containers with each pH Buffer and/or ORP Standard Solution. Arrange them in such a way that you can clearly remember which is the rinse solution and which is the calibration standard/buffer. If you don’t have enough standard/ buffer, you can use 1 container of each standard/buffer for calibration and 1 container of clean water for all rinsing. Always rinse the FCE sensor between standard/buffer solutions. Ensure the FCE sensor is clean and free of debris.

B. pH Calibration using pH 7, 4, and 10 Buffer Solutions.
NOTE: You should always calibrate with pH 7 first.
1. Thoroughly rinse the PT4 by submerging the sensor in pH 7 Buffer rinse solution and swirling it around.
2. Push and release the push button to turn the PT4 on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
4. Release the button when “CAL” displays.
5. The display will alternate between “PUSHnHLD” and “CAL.
6. Push and hold the button, The display will alternate between “PH” and “ORP”.
7. Release the button when “PH” is displayed.
8. The display will indicate “CAL” and the LED will flash rapidly.
9. While the LED flashes rapidly, dip the PT4 in pH 7 Buffer Calibration Solution so that the sensor is completely submerged.
10. While the LED flashes slowly, the pH calibration point will display along with “CAL”.
Swirl the PT4 around to remove bubbles, keeping the sensor submerged.
11. If the pH 7 calibration is successful, the display will indicate “SAVEd”, then “PUSHCONT” will be displayed (“PUSHCONT” will NOT be displayed if only calibrated with pH 4 or 10).
12. Push and release to continue or let the unit time out to exit after a 1-point or 2-point calibration.
13. Repeat steps 9 through 12 with pH 4 and 10 Buffer Solutions. After the 3rd calibration point is successfully saved, the display will indicate “SAVEd” and power off.
14. Verify calibration by retesting the calibration solution in solution check mode “SOL ck”, see section V below.

C. ORP Calibration using 80mV Quinhydrone, 260mV Quinhydrone, or 470mV MLC Light’s ORP Standard Solution.
NOTE: The PT4 has automatic temperature compensation in ORP calibration mode (from 15ºC to 30ºC).
1. Follow pH calibration steps 1 through 6, using ORP Solutions.
2. Release the button when “ORP” is displayed.
3. The display will indicate “CAL” and the LED will flash rapidly.
4. While the LED flashes rapidly, dip the PT4 in ORP Standard Solution so that the
sensor is completely submerged.
5. While the LED flashes slowly, the ORP calibration point will display along with “CAL”.
Swirl the PT4 around to remove any air bubbles, keeping the sensor submerged.
6. If the ORP calibration is successful, the display will indicate “CAL SAVEd”, then time out.
7. Verify calibration by retesting the calibration solution in solution check mode.

V. SOLUTION CHECK
Solution check is provided to verify the proper calibration value was recorded when using pH Buffers and ORP Standard Solutions. To verify proper calibration, simply put the PT4 into solution check mode, select the mode to verify (pH or ORP), then dip the sensor into the pH Buffer or ORP Calibration Solution so that the sensor is completely submerged and swirl around to release any air bubbles, then verify displayed value matches the value on the bottle.

To perform Solution Check:
1. Push and release the push button to turn the PT4 on.
2. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
3. Release the button when “SOL ck” displays.
4. The display will alternate between “PUSHnHLD” and “SOL ck”.
5. Push and hold the button, The display will alternate between “PH” and “ORP”.
6. Release the button when desired mode (pH or ORP) is displayed.
7. While the LED flashes rapidly, dip the PT4 in FRESH buffer/calibration solution so that the sensor is completely submerged and swirl the PT4 around to remove any air bubbles.
8. Verify value displayed is correct.
NOTE: To verify ORP calibration while in solution check mode, you must manually correct for temperature variations from 25ºC. See instructions that come with the ORP Standard Solutions for temperature chart.

VI. Factory Calibration
When pH Buffers are not available, the PT4 can be returned to factory default calibration using the FAC CAL function. This will erase any stored wet calibration.
NOTE: Default factory calibration resets the electronics only and does NOT take the condition of the sensor into consideration.
To return your PT4 to factory calibration:
1. Push and release the push button.
2. Push and hold the button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL”, “PAr SEL”, “SOL ck”, and “ESC”.
3. Release the button when “FAC CAL” displays. The display will alternate between “PUSHnHLD” and “FAC CAL”.
4. Push and hold the push button. “SAVEd FAC” displays indicating the pen has been reset to its factory calibration.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT4 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Comments Off Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Ultrapen PT1 Conductivity, TDS and Salinity Calibration: Myron L Meters

Posted by 3 Apr, 2014

The Ultrapen PT1 is designed to be very reliable and requires only infrequent calibration. The factory recommends calibrating each measurement mode you use once monthly. However, you should check the calibration whenever measurements are not as expected. The PT1 is programmed for 2 calibration options: Wet Calibration or Factory Calibration. Wet calibration is most accurate. But if a high quality standard KCl-1800 µS or 442-3000 ppm solution is not available, the PT1 can be returned to factory settings.

A. Wet Calibration
Use calibration solution specified for measurement mode: Use KCL- 1800 for Cond KCl; Use 442-3000 for tdS 442, SALt 442, tdS NaCl, and SALt NaCl. See Specifications table for 442 solution ppm NaCl equivalent value. Calibrating TDS simultaneously calibrates SALT for the same value and vice versa.
1. Pour calibration solution into a clean container.
2. Rinse the pen 3 times by submerging the cell in fresh calibration solution and swirling it around.
3. Remove pen from solution, then fill the container one more time.
4. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode. Ensure the PT1 is in the correct solution mode.
5. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “CAL” displays.
6. Grasp the pen by its case with your fingers positioned between the
display and the pen cap to avoid sample contamination.
7. While the LED flashes rapidly, dip the pen in calibration solution so that the cell is completely submerged. If you do not submerge the cell in solution before the fl slows, allow the pen to power off and start over.
8. While the LED flashes slowly, swirl the pen around to remove bubbles, keeping the cell submerged. Keep pen at least 1 inch (2½ cm) away from sides/bottom of container.
9. When the LED light stays on solid, remove the pen from the solution. “CAL SAVED” will display indicating a successful calibration.
Note: If an incorrect solution is used or the measurement is NOT within calibration limits for any other reason, “Error” displays alternately with “CLEAn CEL/CHEC SOL”. Check to make sure you are using the correct calibration solution. If the solution is correct, clean the cell by submerging the cell in a 1:1 solution of Lime-A-Way® and water for 5 minutes. Rinse the cell and start over.
10. Small bubbles trapped in the cell can give a false calibration. Measure the calibration solution again to verify correct calibration. If the reading is not within ±1% of the calibration solution value, repeat calibration.

B. Factory Calibration
If you do not have the proper calibration solution or wish to restore the pen to its original factory settings for any other reason, use the FAC CAL function to calibrate the PT1.
1. Press and release the push button. The LCD will briefly display the firmware version then the current measurement mode.
2. Immediately push and hold the push button. The display will scroll through “CAL”, “SOL SEL”, “FAC CAL”, “ºCºF TEMP”, and “ESC”. Release the button when “FAC CAL” displays.
3. While the display scrolls through “PUSHnHLD” and “FAC CAL”, push and hold the push button until the display scrolls through “SAVEd” and “FAC CAL”, indicating the pen has been reset to its factory calibration.
4. Allow the pen to time out to turn power off.

MyronLMeters.com is the premier internet retailer of the Ultrapen PT1 and other reliable Myron L meters. Save 10% on Myron L meters when you order online HERE.

Comments Off Categories : Product Updates

pH Calibration of the Ultrameter 6PFCE: MyronLMeters.com

Posted by 23 Mar, 2014

 

*Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter.

IMPORTANT: Always “zero” your Ultrameter II with a pH 7 buffer solution

before adjusting the gain with acid or base buffers, i.e., 4 and/or 10, etc.

a. pH Zero Calibration (6PFCE)

1. Rinse sensor well and cell cup 3 times with 7 buffer solution.

2. Refill both sensor well and cell cup with 7 buffer solution.

3. Press

pH

 

 

 

 

to verify the pH calibration. If the display shows 7.00, skip the pH

Zero Calibration and proceed to pH Gain Calibration.

4. Press

CAL key

 

 

 

 

 

to enter calibration mode. “CAL”, “BUFFER” and “7” will appear on the display.

display

 

 

 

 

 

 

 

Displayed value will be the uncalibrated sensor.

NOTES: If a wrong buffer is added (outside of 6-8 pH),“7” and “BUFFER

will flash, and the Ultrameter II will not adjust.

The uncalibrated pH value displayed in step 4 will assist in determining

the accuracy of the pH sensor. If the pH reading is above 8 with pH 7

buffer solution, the sensor well needs additional rinsing or the pH sensor

is defective and needs to be replaced.

5. Press

Up

 

 

 

 

or

Down

 

 

 

 

until the display reads 7.00.

NOTE: Attempted calibration of >1 pH point from factory calibration will

cause “FAC” to appear. This indicates the need for sensor replacement

or fresh buffer solution. The “FAC” internal electronic calibration is not intended to

replace calibration with pH buffers. It assumes an ideal pH sensor. Each “FAC”

indicates a factory setting for that calibration step (i.e., 7, acid, base).

You may press

CAL key

 

 

 

 

 

to accept the preset factory value, or you may

reduce your variation from factory setting by pressing

Up

 

 

 

 

or

Down

 

 

 

 

6. Press to accept the new value. The pH Zero Calibration

is now complete. You may continue with pH Gain Calibration or

exit by pressing any measurement key.

b. pH Gain Calibration (6PFCE)

IMPORTANT: Always calibrate or verify your Ultrameter II with a pH 7

buffer solution before adjusting the gain with acid or base buffers, i.e.,

4 and/or 10, etc. Either acid or base solution can be used for the 2nd

point “Gain” calibration and then the opposite for the 3rd point. The

display will verify that a buffer is in the sensor well by displaying either

Acd” or “bAS”.

1. The pH calibration mode is initiated by either completion of the

pH Zero Calibration, or verifying 7 buffer and pressing the

CAL key

 

 

 

 

 

key twice while in pH measurement mode.

2. At this point the “CAL”, “BUFFER” and “Acd” or “bAS

will be displayed (see Figures 7 and 8).

Capture

 

NOTE: If the “Acd” and “bAS” indicators are blinking, it indicates

an error and needs either an acid or base solution present in the sensor

well.

3. Rinse sensor well 3 times with acid or base buffer solution.

4. Refill sensor well again with same buffer solution.

5. Press

Up

 

 

 

 

or

Down

 

 

 

 

until the display agrees with the buffer value.

6. Press

CAL key

 

 

 

 

 

to accept the 2nd point of calibration. Now the

display indicates the next type of buffer to be used.

Single point Gain Calibration is complete. You may continue for the 3rd

point of Calibration (2nd Gain) or exit by pressing any measurement key.

Exiting causes the value accepted for the buffer to be used for both acid

and base measurements.

To continue with 3rd point calibration, use basic buffer if acidic buffer

was used in the 2nd point, or vice-versa. Again, match the display to the

known buffer value as in step 2 and continue with the following steps:

7. Repeat steps 3 through 6 using opposite buffer solution.

8. Press

CAL key

 

 

 

 

 

to accept 3rd point of calibration, which completes the Calibration procedure.

Fill sensor well with Sensor Storage Solution and replace protective cap.

You can find technical advice and videos, the calibration solutions you need, and reliable Myron L meters
at MyronLMeters.com
Comments Off Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

TDS Calibration on the Ultrameter II 6PIIFCe: MyronLMeters.com

Posted by 23 Mar, 2014

 

*Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter.

a. Fill and rinse the conductivity cell three times with a 442 standard solution. In this example, we’re using 442-3000.

b. Refill conductivity cell with same standard solution you rinsed with.

c. Press

TDS

 

 

 

 

 

then press

 

.CAL key

 

 

 

 

The “CAL” icon will appear in the top center of the display. In this example, the reading shows 2988.

d. Press

Up

 

 

 

 

 

or

Down

 

 

 

 

 

to step the displayed value toward the standard’s value.

In this example, we’re pressing

 

Up

 

 

 

 

 

to go down from 2988 to 3000. You can also hold a key down to scroll rapidly.

e. Press

 

CAL key

 

 

 

 

 

once to confirm the new value and end the calibration.

You can find technical advice and videos, the calibration solutions you need, and reliable Myron L meters
at MyronLMeters.com
 
 

 

Comments Off Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Conductivity Calibration on the Ultrameter II 6PIIFCe: MyronLMeters.com

Posted by 23 Mar, 2014

 

*Note: This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter.

a.  Fill and rinse the conductivity cell three times with a KCL standard solution. In this example, we’re using KCL-7000.

b. Refill conductivity cell with same standard solution you rinsed with.

c. Press

COND

 

 

 

 

then press

CAL key

.

 

 

 

The “CAL” icon will appear on the display.

display

 

 

 

 

 

 

 

 

 

 

 

d. Press

Up

 

 

 

or

Down

 

 

 

 

to step the displayed value toward the standard’s value.

In this example, we’re pressing

Down

 

 

 

 

to go down from 7032 to 7000. You can also hold a key down to scroll rapidly.

e. Press

CAL key

 

 

 

 

 

once to confirm the new value and end the calibration.

You can find technical advice and videos, the calibration solutions you need, and reliable Myron L meters
at MyronLMeters.com
Comments Off Categories : Application Advice, Care and Maintenance, Product Updates, Technical Tips

Ultrapen PT2 Calibration – MyronLMeters.com

Posted by 28 Oct, 2012


Ultrapen PT2 Calibration
We recommend calibrating twice a month, depending on usage. However, you should check the calibration whenever measurements are not as expected. 3-point Wet Calibration is most accurate and is recommended.

NOTE: If the measurement is NOT within calibration limits for any reason, “Error” will display. Check to make sure you are using a proper pH buffer solution. If the solution is correct, clean the glass bulb of the sensor with a cotton swab soaked in isopropyl alcohol. Restart calibration.

NOTE: Small bubbles trapped in the sensor may give a false calibration. After calibration is completed, measure the pH buffer solutions again to verify correct calibration.

NOTE: If at any point during calibration, you do not submerge the sensor in solution
before the flashing slows, allow the pen to power off and start over.

A. Calibration Preparation
1. For maximum accuracy, fill 2 clean containers with each pH buffer. Arrange them in such a way that you can clearly remember which is the rinse solution and which is the calibration buffer. If you don’t have enough buffer, you can use
1 container of each buffer for calibration and 1 container of clean water for all rinsing. Always rinse the pH sensor between buffer solutions.
2. Ensure the pH sensor is clean and free of debris.

B. 3-Point Calibration
Use pH 7, 4 and 10 buffers for 3-point calibration. You can find the buffer solutions here: http://www.myronlmeters.com/pH-Buffer-Calibration-Solutions-s/82.htm
1. Thoroughly rinse the pen by submerging the sensor in pH 7 buffer rinse solution and swirling it around.
2. Push and release the push button to turn the unit on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
4. Release the button when “CAL” displays. The display will indicate “CAL” and
the LED will flash rapidly.
5. While the LED flashes rapidly, dip the pen in pH 7 buffer calibration solution
so that the sensor is completely submerged.
6. While the LED flashes slowly, the pH calibration point will display along with
“CAL”. Swirl the pen around to remove bubbles, keeping the sensor submerged.
7. If the pH 7 calibration is successful, the display will indicate “SAVEd”, then
“PUSHCONT” will be displayed.
8. Push and release the push button to continue. The LED will begin flashing rapidly.
9. Repeat steps 5 through 8 with pH 4 and 10 buffer calibration solutions.
10. After the 3rd calibration point is successfully saved, the display will indicate
“SAVEd” and power off.
11. Verify calibration by retesting the calibration solution.

C. 2-Point Calibration
Use pH 7 and 4 or 10 buffers for 2-point calibration.
1. Thoroughly rinse the pen by submerging the sensor in pH 7 buffer rinse solution and swirling it around.
2. Push and release the push button to turn the unit on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
4. Release the button when “CAL” displays. The display will indicate “CAL” and
the LED will flash rapidly.
5. While the LED flashes rapidly, dip the pen in pH 7 buffer calibration solution
so that the sensor is completely submerged.
6. While the LED flashes slowly, the pH calibration point will display along with
“CAL”. Swirl the pen around to remove bubbles, keeping the sensor submerged.
7. If the pH 7 calibration is successful, the display will indicate “SAVEd”, then
“PUSHCONT” will be displayed.
8. Push and release the push button to continue. The LED will begin flashing rapidly.
9. Repeat steps 5 through 7 with pH 4 or 10 buffer calibration solution.
10. Leave the pen in the same buffer solution until the unit powers off. The offset will be applied to the remaining calibration point.
11. Verify calibration by retesting the calibration solution.

D. 1-Point Calibration
Use pH 7, 4 or 10 buffer for 1-point calibration.
1. Thoroughly rinse the pen by submerging the sensor in pH buffer rinse solution and swirling it around.
2. Push and release the push button to turn the unit on.
3. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
4. Release the button when “CAL” displays. The display will indicate “CAL”
and the LED will flash rapidly.
5. While the LED flashes rapidly, dip the pen in pH buffer calibration solution
so that the sensor is completely submerged.
6. While the LED flashes slowly, the pH calibration point will display along with “CAL”;
swirl the pen around to remove bubbles, keeping the sensor submerged.
7. If the pH calibration is successful, the display will indicate “SAVEd”, then “PUSHCONT” will be displayed. “PUSHCONT” will not display if you calibrated 4 or 10.
8. Leave the pen in the same buffer solution until the unit powers off. The offset will be applied to the remaining calibration points.
9. Verify calibration by retesting the calibration solution.

E. Factory Calibration
When pH buffers are not available, the PT2 can be returned to factory default calibration using the FAC CAL function. This will erase any stored wet calibration. NOTE: default factory calibration resets the electronics only and does NOT take the condition of the sensor into consideration.
To return your unit to factory calibration:
1. Push and release the push button.
2. Push and hold the push button. The display will alternate between “CAL”, “FAC CAL”, “ºCºF TEMP”, “ModE SEL” and “ESC”.
3. Release the button when “FAC CAL” displays. The display will alternate between “PUSHnHLD” and “FAC CAL”.
4. Push and hold the push button. “SAVEd FAC” displays indicating the pen has been reset to its factory calibration.

Myron L Meters is the premier online retailer of accurate, reliable, easy-to-use Myron L meters.

Please visit us on the web at:

http://www.myronlmeters.com

Facebook:

http://www.facebook.com/pages/Myron-L-Meters/147455608645777

Twitter:

http://twitter.com/MyronLMeters

Google +:

https://plus.google.com/i/0gw_uw5P328:dbK-UM_4xek

Linkedin:

http://www.linkedin.com/profile/view?id=98473409&trk=tab_pro

YouTube:

http://www.youtube.com/myronlmeters

News:

http://waterindustrynews.com

Comments Off Categories : Product Updates, Technical Tips

Myron L Meters Thanks Alliance Calibration!

Posted by 18 Jul, 2011
Scientist

Alliance Calibration is centrally located in Cincinnati, Ohio.

Our client base includes Aeronautical, Defense, Automotive, Government, Research, Medical, Pharmaceutical, Energy & Power industries.

Do you have a need for rapid turnaround on your calibrations? 
Rapid turnaround is not a problem at Alliance Calibration. We ship daily to the entire United States.

Are on-site calibrations critical to your operation?
We have the capabilities and expertise to perform most calibrations on-site at your facility to prevent costly down time. We are accredited to ISO:17025 and our calibration staff have earned American Society for Quality certifications.

Do you need access to your calibration certificates 24 hours per day, 365 days per year
Our eTracking program allows you access your data from your computer 24 hours a day! In addition, you can print your calibration certificates on your own printer!

More about this fine company here: http://www.alliancecalibration.com/

There’s always more at MyronLMeters.com.

Comments Off Categories : Uncategorized

Myron L Meters Thanks Alliance Calibration!

Posted by 18 Jul, 2011
Scientist

Alliance Calibration is centrally located in Cincinnati, Ohio.

Our client base includes Aeronautical, Defense, Automotive, Government, Research, Medical, Pharmaceutical, Energy & Power industries.

Do you have a need for rapid turnaround on your calibrations? 
Rapid turnaround is not a problem at Alliance Calibration. We ship daily to the entire United States.

Are on-site calibrations critical to your operation?
We have the capabilities and expertise to perform most calibrations on-site at your facility to prevent costly down time. We are accredited to ISO:17025 and our calibration staff have earned American Society for Quality certifications.

Do you need access to your calibration certificates 24 hours per day, 365 days per year
Our eTracking program allows you access your data from your computer 24 hours a day! In addition, you can print your calibration certificates on your own printer!

More about this fine company here: http://www.alliancecalibration.com/

There’s always more at MyronLMeters.com.

Comments Off Categories : Uncategorized